23,376 research outputs found

    The temperature arrested intermediate of virus-cell fusion is a functional step in HIV infection

    Get PDF
    HIV entry occurs via membrane-mediated fusion of virus and target cells. Interactions between gp120 and cellular co-receptors lead to both the formation of fusion pores and release of the HIV genome into target cells. Studies using cell-cell fusion assays have demonstrated that a temperature-arrested state (TAS) can generate a stable intermediate in fusion related events. Other studies with MLV pseudotyped with HIV envelope also found that a temperature sensitive intermediate could be generated as revealed by the loss of a fluorescently labeled membrane. However, such an intermediate has never been analyzed in the context of virus infection. Therefore, we used virus-cell infection with replication competent HIV to gain insights into virus-cell fusion. We find that the TAS is an intermediate in the process culminating in the HIV infection of a target cell. In the virion-cell TAS, CD4 has been engaged, the heptad repeats of gp41 are exposed and the complex is kinetically predisposed to interact with coreceptor to complete the fusion event leading to infection

    Phase behavior of a confined nano-droplet in the grand-canonical ensemble: the reverse liquid-vapor transition

    Full text link
    The equilibrium density distribution and thermodynamic properties of a Lennard-Jones fluid confined to nano-sized spherical cavities at constant chemical potential was determined using Monte Carlo simulations. The results describe both a single cavity with semipermeable walls as well as a collection of closed cavities formed at constant chemical potential. The results are compared to calculations using classical Density Functional Theory (DFT). It is found that the DFT calculations give a quantitatively accurate description of the pressure and structure of the fluid. Both theory and simulation show the presence of a ``reverse'' liquid-vapor transition whereby the equilibrium state is a liquid at large volumes but becomes a vapor at small volumes.Comment: 13 pages, 8 figures, to appear in J. Phys. : Cond. Mat

    When a portion becomes a norm : exposure to a smaller vs. larger portion of food affects later food intake

    Get PDF
    Background: Portion sizes in the food environment may communicate information about what constitutes a ‘normal’ amount of food to eat. Here we examined whether mere visual exposure to a smaller vs. larger portion size of snack food affects perceptions of how much a ‘normal’ sized portion is and how much people choose to eat of that food in future. Methods: Under the guise of a study on taste preference and personality, 104 female participants were randomly allocated to be exposed to either a smaller or larger portion size of snack food. Twenty-four hours later participants freely selected a portion of the snack food to consume and reported on their perception of what constituted a normal sized portion of the snack food. Results: Participants that were exposed to a smaller, as opposed to larger portion size subsequently believed that a normal portion of the snack food was smaller in size. Exposure to the smaller as opposed to the larger portion size also resulted in participants consuming less snack food the next day. Conclusions: Environmental exposure to smaller, as opposed to larger portion sizes of food may change perceptions of what constitutes a normal amount of food to eat and affect the amount of food people choose to eat in future

    High-precision measurement of the half-life of 62^{62}Ga

    Full text link
    The beta-decay half-life of 62Ga has been studied with high precision using on-line mass separated samples. The decay of 62Ga which is dominated by a 0+ to 0+ transition to the ground state of 62Zn yields a half-life of T_{1/2} = 116.19(4) ms. This result is more precise than any previous measurement by about a factor of four or more. The present value is in agreement with older literature values, but slightly disagrees with a recent measurement. We determine an error weighted average value of all experimental half-lives of 116.18(4) ms.Comment: 9 pages, 5 figures, accepted for publication in PR

    Utilizing pHluorin-Tagged Receptors to Monitor Subcellular Localization and Trafficking

    Get PDF
    Understanding membrane protein trafficking, assembly, and expression requires an approach that differentiates between those residing in intracellular organelles and those localized on the plasma membrane. Traditional fluorescence-based measurements lack the capability to distinguish membrane proteins residing in different organelles. Cutting edge methodologies transcend traditional methods by coupling pH-sensitive fluorophores with total internal reflection fluorescence microscopy (TIRFM). TIRF illumination excites the sample up to approximately 150 nm from the glass-sample interface, thus decreasing background, increasing the signal to noise ratio, and enhancing resolution. The excitation volume in TIRFM encompasses the plasma membrane and nearby organelles such as the peripheral ER. Superecliptic pHluorin (SEP) is a pH sensitive version of GFP. Genetically encoding SEP into the extracellular domain of a membrane protein of interest positions the fluorophore on the luminal side of the ER and in the extracellular region of the cell. SEP is fluorescent when the pH is greater than 6, but remains in an off state at lower pH values. Therefore, receptors tagged with SEP fluoresce when residing in the endoplasmic reticulum (ER) or upon insertion in the plasma membrane (PM) but not when confined to a trafficking vesicle or other organelles such as the Golgi. The extracellular pH can be adjusted to dictate the fluorescence of receptors on the plasma membrane. The difference in fluorescence between TIRF images at neutral and acidic extracellular pH for the same cell corresponds to a relative number of receptors on the plasma membrane. This allows a simultaneous measurement of intracellular and plasma membrane resident receptors. Single vesicle insertion events can also be measured when the extracellular pH is neutral, corresponding to a low pH trafficking vesicle fusing with the plasma membrane and transitioning into a fluorescent state. This versatile technique can be exploited to study localization, expression, and trafficking of membrane proteins

    Flow Induced Organization and Memory of a Vortex Lattice

    Full text link
    We report on experiments probing the evolution of a vortex state in response to a driving current in 2H-NbSe2_2 crystals. By following the vortex motion with fast transport measurements we find that the current enables the system to reorganize and access new configurations. During this process the system exhibits a long-term memory: if the current is turned off the vortices freeze in place remembering their prior motion. When the current is restored the motion resumes where it stopped. The experiments provide evidence for a dynamically driven structural change of the vortex lattice and a corresponding dynamic phase diagram that contains a previously unknown regime where the critical current can be either increasedincreased or decreaseddecreased by applying an appropriate driving current.Comment: 5 pages, 4figure

    Pharmacological chaperoning of nAChRs: A therapeutic target for Parkinson's disease

    Get PDF
    Chronic exposure to nicotine results in an upregulation of neuronal nicotinic acetylcholine receptors (nAChRs) at the cellular plasma membrane. nAChR upregulation occurs via nicotine-mediated pharmacological receptor chaperoning and is thought to contribute to the addictive properties of tobacco as well as relapse following smoking cessation. At the subcellular level, pharmacological chaperoning by nicotine and nicotinic ligands causes profound changes in the structure and function of the endoplasmic reticulum (ER), ER exit sites, the Golgi apparatus and secretory vesicles of cells. Chaperoning-induced changes in cell physiology exert an overall inhibitory effect on the ER stress/unfolded protein response. Cell autonomous factors such as the repertoire of nAChR subtypes expressed by neurons and the pharmacological properties of nicotinic ligands (full or partial agonist versus competitive antagonist) govern the efficiency of receptor chaperoning and upregulation. Together, these findings are beginning to pave the way for developing pharmacological chaperones to treat Parkinson's disease and nicotine addiction

    Why do some asthma patients respond poorly to glucocorticoid therapy?

    Get PDF
    Glucocorticosteroids are the first-line therapy for controlling airway inflammation in asthma. They bind intracellular glucocorticoid receptors to trigger increased expression of anti-inflammatory genes and suppression of pro-inflammatory gene activation in asthmatic airways. In the majority of asthma patients, inhaled glucocorticoids are clinically efficacious, improving lung function and preventing exacerbations. However, 5–10 % of the asthmatic population respond poorly to high dose inhaled and then systemic glucocorticoids. These patients form a category of severe asthma associated with poor quality of life, increased morbidity and mortality, and constitutes a major societal and health care burden. Inadequate therapeutic responses to glucocorticoid treatment is also reported in other inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease; however, asthma represents the most studied steroid-refractory disease. Several cellular and molecular events underlying glucocorticoid resistance in asthma have been identified involving abnormalities of glucocorticoid receptor signaling pathways. These events have been strongly related to immunological dysregulation, genetic, and environmental factors such as cigarette smoking or respiratory infections. A better understanding of the multiple mechanisms associated with glucocorticoid insensitivity in asthma phenotypes could improve quality of life for people with asthma but would also provide transferrable knowledge for other inflammatory diseases. In this review, we provide an update on the molecular mechanisms behind steroid-refractory asthma. Additionally, we discuss some therapeutic options for treating those asthmatic patients who respond poorly to glucocorticoid therapy
    • …
    corecore