20,302 research outputs found

    Synthesis of neutral nickel catalysts for ethylene polymerization – the influence of ligand size on catalyst stability

    Get PDF
    A facile synthesis of nickel salicylaldimine complexes with labile dissociating ligands is described. In addition to producing highly active ethylene polymerization catalysts, important insights into the effect of ligand size on catalyst stability and information on the mechanism of polymerization are provided

    Preparing the foundations for video-based, practice-placement support: establishing the role from a students’ perspective

    Get PDF
    Currently, many placement-based health programme students within the UK are supported through face-to-face visits from university staff. Whilst cited in literature as being of value, the face-to-face nature of this contact is not supported. Alternatives including video-based communications methods offer the potential for cost effective, environmentally responsible support. However, in order to establish the fitness for purpose of alternative approaches, the content and purpose of current support needs to be understood. This project aimed to investigate student perceptions of the ideal content and purpose of clinical support visits, and alternatives to the current face-to-face approach. Fifty-six Physiotherapy undergraduate students responded to questionnaires with a further nine participating in a follow-up focus group. Participants emphasised the value of the visit in guiding learning, ensuring progression and resolving arising issues, and highlighted concerns over alternative approaches. Focus group participants discussed the importance of personal and professional confidence in directing requirements for support, and went on to propose a menu of options for methods of communication.Whilst limited in some applications, video technologies may be one of the options. Overall, however, this project supports the need for consideration of individualised learning journeys within curriculum planning

    Flow Induced Organization and Memory of a Vortex Lattice

    Full text link
    We report on experiments probing the evolution of a vortex state in response to a driving current in 2H-NbSe2_2 crystals. By following the vortex motion with fast transport measurements we find that the current enables the system to reorganize and access new configurations. During this process the system exhibits a long-term memory: if the current is turned off the vortices freeze in place remembering their prior motion. When the current is restored the motion resumes where it stopped. The experiments provide evidence for a dynamically driven structural change of the vortex lattice and a corresponding dynamic phase diagram that contains a previously unknown regime where the critical current can be either increasedincreased or decreaseddecreased by applying an appropriate driving current.Comment: 5 pages, 4figure

    The Efficacy of SEER as a Seasonal Performance Measure for Different Climates

    Get PDF

    Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States

    Full text link
    We introduce the notion of quantum dissension for a three-qubit system as a measure of quantum correlations. We use three equivalent expressions of three-variable mutual information. Their differences can be zero classically but not so in quantum domain. It generalizes the notion of quantum discord to a multipartite system. There can be multiple definitions of the dissension depending on the nature of projective measurements done on the subsystems. As an illustration, we explore the consequences of these multiple definitions and compare them for three-qubit pure and mixed GHZ and W states. We find that unlike discord, dissension can be negative. This is because measurement on a subsystem may enhance the correlations in the rest of the system. This approach can pave a way to generalize the notion of quantum correlations in the multiparticle setting.Comment: 9 pages 6 figures typo fixed and some arguments adde

    Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays

    Full text link
    We present a derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that inclusion of local chemical potential and driving velocity fields as a gauge field allows derivation of the hydrodynamic equations of motion for the driven macroscopic phase differences across simple aperture arrays. For a single aperture, the current-phase equation for driven flow contains sinusoidal, linear, and current-bias contributions. We compute the renormalization group (RG) beta function of the periodic potential in the effective action for small tunneling amplitudes and use this to analyze the temperature dependence of the low-energy current-phase relation, with application to the transition from linear to sinusoidal current-phase behavior observed in experiments by Hoskinson et al. \cite{packard} for liquid 4^{4}He driven through nanoaperture arrays. Extension of the microscopic theory to a two-aperture array shows that interference between the microscopic tunneling contributions for individual apertures leads to an effective coupling between apertures which amplifies the Josephson oscillations in the array. The resulting multi-aperture current-phase equations are found to be equivalent to a set of equations for coupled pendula, with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte

    Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform

    Get PDF
    Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.
    • …
    corecore