454 research outputs found

    Production of neutral MSSM Higgs bosons in e+e−e^+e^- collisions: a complete 1-loop calculation

    Get PDF
    We present the first complete 1-loop diagrammatic calculation of the cross sections for the neutral Higgs production processes e^+e^-\ra Z^0h^0 and e^+e^-\ra A^0h^0 in the minimal supersymmetric standard model. We compare the results from the diagrammatic calculation with the corresponding ones of the simpler and compact effective potential approximation and discuss the typical size of the differences.Comment: LaTeX, 16 pages, 8 figures appended in a uuencoded file, complete PostScript file available at http://itpaxp1.physik.uni-karlsruhe.de/prep/KA-TP-16-1995/KA-TP-16-199

    Top-Down Approach to Unified Supergravity Models

    Full text link
    We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification.Comment: 19 pages, uuencoded compressed ps file, DESY 94-057 (paper format corrected

    MSSM Higgs Boson Phenomenology at the Tevatron Collider

    Get PDF
    The Higgs sector of the minimal supersymmetric standard model (MSSM) consists of five physical Higgs bosons, which offer a variety of channels for their experimental search. The present study aims to further our understanding of the Tevatron reach for MSSM Higgs bosons, addressing relevant theoretical issues related to the SUSY parameter space, with special emphasis on the radiative corrections to the down--quark and lepton couplings to the Higgs bosons for large tan⁥ÎČ\tan\beta. We performed a computation of the signal and backgrounds for the production processes WϕW\phi and bbˉϕb \bar{b} \phi at the upgraded Tevatron, with ϕ\phi being the neutral MSSM Higgs bosons. Detailed experimental information and further higher order calculations are demanded to confirm/refine these predictions.Comment: 47 pages, REVTex format, 15 figures; spacing changed to reduce length, references added or moved within manuscript for clarity, some rewording, labelling corrected on two figures, results unchange

    Remarks on the Upper Bounds on the Higgs Boson Mass from Triviality

    Full text link
    We study the effects of the one-loop matching conditions on Higgs boson and top quark masses on the triviality bounds on the Higgs boson mass using ÎČλ\beta_{\lambda} with corrected two-loop coefficients. We obtain quite higher results than previous ones and observe that the triviality bounds are not nearly influenced by varying top quark mass over the range measured at CDF and D0. The effects of typo errors in ÎČλ(2)\beta_{\lambda}^{(2)} and the one-loop matching condition on the top quark mass are negligible. We estimate the size of effects on the triviality bounds from the one-loop matching condition on the Higgs boson mass.Comment: 9 pages, tar'ed gzip'ed uuencoded files, LaTex, 5 PostScript figures. To appear in Physical Review

    A No-Lose Theorem for Higgs Searches at a Future Linear Collider

    Get PDF
    Assuming perturbativity up to a high energy scale ∌1016\sim 10^{16} GeV, we demonstrate that a future e+e−e^+e^- linear collider operating at s=\sqrt{s} = 500 GeV with ∫L=\int{\cal L}= 500 fb−1^{-1} per year (such as the recently proposed TESLA facility) will detect a Higgs boson signal regardless of the complexity of the Higgs sector and of how the Higgs bosons decay.Comment: 4 pages, LaTe

    Supersymmetry Unification Predictions for M_top V_cb and tan(beta)

    Get PDF
    We study the predictions for M_top, tan(beta) and V_cb in a popular texture ansatze for the fermion mass matrices. We do this both for the Minimal Supersymmetric Standard Model (MSSM) and for the simplest model (MSSM-BRpV) where a bilinear R-Parity violating term is added to the superpotential. We find that taking the experimental values for M_top and V_cb at 99 % C.L. and the GUT relations h_b=h_tau and (V_cb)^2=h_c/h_t within 5 %, the large tan(beta) solution, characteristic in the MSSM with bottom--tau unification, becomes disallowed. In contrast the corresponding allowed region for the MSSM-BRpV is slightly larger. We also find that important modifications occur if we relax the texture conditions at the GUT scale. For example, if the GUT relations are imposed at 40 %, the large tan(beta) branch in the MSSM becomes fully allowed. In addition, in MSSM-BRpV the whole tan(beta)-M_top plane become allowed, finding unification at any value of tan(beta).Comment: 15 pages, including 6 figures. Late

    Probing Minimal Supergravity at the CERN LHC for Large tan⁥ÎČ\tan\beta

    Get PDF
    For large values of the minimal supergravity model parameter tan⁥ÎČ\tan\beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of τ\tau-sleptons and bb-squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to τ\tau-leptons and bb-quarks. We evaluate the reach of the CERN LHC pppp collider for supersymmetry in the mSUGRA model parameter space. We find that values of mtgâĄâˆŒ1500−2000m_{\tg}\sim 1500-2000 GeV can be probed with just 10 fb−1^{-1} of integrated luminosity for tan⁥ÎČ\tan\beta values as high as 45, so that mSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tan⁥ÎČ\tan\beta. We also perform a case study of an mSUGRA model at tan⁥ÎČ=45\tan\beta =45 where \tz_2\to \tau\ttau_1 and \tw_1\to \ttau_1\nu_\tau with ∌100\sim 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m_{\tz_2}-m_{\tz_1}, can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tan⁥ÎČ\tan\beta there can be an observable excess of τ\tau leptons, and argue that τ\tau signals might serve to provide new information about the underlying model framework.Comment: 22 page REVTEX file including 8 figure

    A Supersymmetric Solution to the Solar and Atmospheric Neutrino Problems

    Get PDF
    The simplest unified extension of the Minimal Supersymmetric Standard Model with bi-linear R--Parity violation provides a predictive scheme for neutrino masses which can account for the observed atmospheric and solar neutrino anomalies in terms of bi-maximal neutrino mixing. The maximality of the atmospheric mixing angle arises dynamically, by minimizing the scalar potential, while the solar neutrino problem can be accounted for either by large or by small mixing oscillations. One neutrino picks up mass by mixing with neutralinos, while the degeneracy and masslessness of the other two is lifted only by loop corrections. Despite the smallness of neutrino masses R-parity violation is observable at present and future high-energy colliders, providing an unambiguous cross-check of the model.Comment: 5 pages, final version published in Phys. Rev. D61, 2000, 071703(R

    Mirror Position Determination for the Alignment of Cherenkov Telescopes

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and implementation demonstratio

    FACT - Monitoring Blazars at Very High Energies

    Full text link
    The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of La Palma in October 2011 as a proof of principle for silicon based photosensors in Cherenkov Astronomy. The scientific goal of the project is to study the variability of active galatic nuclei (AGN) at TeV energies. Observing a small sample of TeV blazars whenever possible, an unbiased data sample is collected. This allows to study the variability of the selected objects on timescales from hours to years. Results from the first three years of monitoring will be presented. To provide quick flare alerts to the community and trigger multi-wavelength observations, a quick look analysis has been installed on-site providing results publicly online within the same night. In summer 2014, several flare alerts were issued. Results of the quick look analysis are summarized.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
    • 

    corecore