438 research outputs found

    High-amplitude, long-term X-ray variability in the solar-type star HD 81809: the beginning of an X-ray activity cycle?

    Full text link
    We present the initial results from our XMM program aimed at searching for X-ray activity cycles in solar-type stars. HD 81809 is a G2-type star (somewhat more evolved than the Sun, and with a less massive companion) with a pronounced 8.2 yr chromospheric cycle, as evident from from the Mt. Wilson program data. We present here the results from the initial 2.5 years of XMM observations, showing that large amplitude (a factor of approx. 10) modulation is present in the X-ray luminosity, with a clearly defined maximum in mid 2002 and a steady decrease since then. The maximum of the chromospheric cycle took place in 2001; if the observed X-ray variability is the initial part of an X-ray cycle, this could imply a phase shift between chromospheric and coronal activity, although the current descent into chromospheric cycle minimum is well reflected into the star's X-ray luminosity. The observations presented here provide clear evidence for the presence of large amplitude X-ray variability coherent with the activity cycle in the chromosphere in a star other than the Sun.Comment: Accepted for publication in A&

    Crossing the Brown Dwarf Desert Using Adaptive Optics: A Very Close L-Dwarf Companion to the Nearby Solar Analog HR 7672

    Get PDF
    We have found a very faint companion to the active solar analog HR 7672 (HD 190406; GJ 779; 15 Sge). Three epochs of high resolution imaging using adaptive optics (AO) at the Gemini-North and Keck II Telescopes demonstrate that HR 7672B is a common proper motion companion, with a separation of 0.79" (14 AU) and a 2.16 um flux ratio of 8.6 mags. Using follow-up K-band spectroscopy from Keck AO+NIRSPEC, we measure a spectral type of L4.5+/-1.5. This is the closest ultracool companion around a main sequence star found to date by direct imaging. We estimate the primary has an age of 1-3 Gyr. Assuming coevality, the companion is most likely substellar, with a mass of 55-78 Mjup based on theoretical models. The primary star shows a long-term radial velocity trend, and we combine the radial velocity data and AO imaging to set a firm (model-independent) lower limit of 48 Mjup. In contrast to the paucity of brown dwarf companions at <~4 AU around FGK dwarfs, HR 7672B implies that brown dwarf companions do exist at separations comparable to those of the giant planets in our own solar system. Its presence is at variance with scenarios where brown dwarfs form as ejected stellar embryos. Moreover, since HR 7672B is likely too massive to have formed in a circumstellar disk as planets are believed to, its discovery suggests that a diversity of physical processes act to populate the outer regions of exoplanetary systems.Comment: Astrophysical Journal, in pres

    Ages for illustrative field stars using gyrochronology: viability, limitations and errors

    Full text link
    We here develop an improved way of using a rotating star as a clock, set it using the Sun, and demonstrate that it keeps time well. This technique, called gyrochronology, permits the derivation of ages for solar- and late-type main sequence stars using only their rotation periods and colors. The technique is clarified and developed here, and used to derive ages for illustrative groups of nearby, late-type field stars with measured rotation periods. We first demonstrate the reality of the interface sequence, the unifying feature of the rotational observations of cluster and field stars that makes the technique possible, and extends it beyond the proposal of Skumanich by specifying the mass dependence of rotation for these stars. We delineate which stars it cannot currently be used on. We then calibrate the age dependence using the Sun. The errors are propagated to understand their dependence on color and period. Representative age errors associated with the technique are estimated at ~15% (plus possible systematic errors) for late-F, G, K, & early-M stars. Ages derived via gyrochronology for the Mt. Wilson stars are shown to be in good agreement with chromospheric ages for all but the bluest stars, and probably superior. Gyro ages are then calculated for each of the active main sequence field stars studied by Strassmeier and collaborators where other ages are not available. These are shown to be mostly younger than 1Gyr, with a median age of 365Myr. The sample of single, late-type main sequence field stars assembled by Pizzolato and collaborators is then assessed, and shown to have gyro ages ranging from under 100Myr to several Gyr, and a median age of 1.2Gyr. Finally, we demonstrate that the individual components of the three wide binaries XiBooAB, 61CygAB, & AlphaCenAB yield substantially the same gyro ages.Comment: 58 pages, 18 color figures, accepted for publication in The Astrophysical Journal; Age uncertainties slightly modified upon correcting an algebraic error in Section

    The Monumental Temple Terrace at Urkesh and its Setting

    Get PDF
    Buccellati, F. 2010. “The Monumental Temple Terrace at Urkesh and its Setting.” In Kulturlandschaft Syrien: Zentrum und Peripherie Festschrift für Jan-Waalke Meyer, edited by J. Becker, R. Hempelmann, and E. Rehm, 71–86. AOAT 371. Münster: Ugarit

    Lay leadership dinner

    Get PDF
    Immanuel Janssen, master of ceremonies; R. Hopmann, L. Hempelmann, J. Klotz, R. Meyer, M. Miller, S. Nafzger, R. Bohlmann, speakers. Recorded May 7, 1981

    Dynamics, cation conformation and rotamers in guanidinium ionic liquids with ether groups

    Get PDF
    Ionic liquids are modern materials with a broad range of applications, including electrochemical devices, the exploitation of sustainable resources and chemical processing. Expanding the chemical space to include novel ion classes allows for the elucidation of novel structure-property relationships and fine tuning for specific applications. We prepared a set of ionic liquids based on the sparsely investigated pentamethyl guanidinium cation with a 2-ethoxy-ethyl side chain in combination with a series of frequently used anions. The resulting properties are compared to a cation with a pentyl side chain lacking ether functionalization. We measured the thermal transitions and transport properties to estimate the performance and trends of this cation class. The samples with imide-type anions form liquids at ambient temperature, and show good transport properties, comparable to imidazolium or ammonium ionic liquids. Despite the dynamics being significantly accelerated, ether functionalization of the cation favors the formation of crystalline solids. Single crystal structure analysis, ab initio calculations and variable temperature nuclear magnetic resonance measurements (VT-NMR) revealed that cation conformations for the ether- and alkyl-chain-substituted are different in both the solid and liquid states. While ether containing cations adopt compact, curled structures, those with pentyl side chains are linear. The Eyring plot revealed that the curled conformation is accompanied by a higher activation energy for rotation around the carbon-nitrogen bonds, due to the coordination of the ether chain as observed by VT-NMR

    The Active Corona of HD 35850 (F8 V)

    Get PDF
    We present Extreme Ultraviolet Explorer spectroscopy and photometry of the nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW spectrum shows a small but clearly detectable continuum. The line-to-continuum ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting emission-measure distribution is characterized by two temperature components at log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be the result of incomplete X-ray line lists, we cannot explain the disagreement between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance. Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity extremum for single, main-sequence F-type stars. The variability and EM distribution can be reconstructed using the continuous flaring model of Guedel provided that the flare distribution has a power-law index of 1.8. Similar results obtained for other young solar analogs suggest that continuous flaring is a viable coronal heating mechanism on rapidly rotating, late-type, main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April 10 issue of The Astrophysical Journa
    corecore