3,663 research outputs found

    Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    Full text link
    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm^2 size and 525 micro m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10 % at 950 V. The signal size obtained from electrons crossing the stack at this voltage is about 22000 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20 % in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.Comment: 13 pages, 7 figures, 3 table

    The outer crust of non-accreting cold neutron stars

    Get PDF
    The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.Comment: 20 pages, 10 figures, accepted for publication in Phys. Rev.

    Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta)

    Get PDF
    Funding Information US Department of Agriculture AFRI Award. Grant Number: 2009‐35302‐05301 Marie Curie International Incoming Fellowship. Grant Number: FP7‐PEOPLE‐2013‐IIF‐625487Peer reviewedPublisher PD

    The rapidly oscillating Ap star HD 99563 and its distorted dipole pulsation mode

    Full text link
    We undertook a time-series photometric multi-site campaign for the rapidly oscillating Ap star HD 99563 and also acquired mean light observations over two seasons. The pulsations of the star, that show flatter light maxima than minima, can be described with a frequency quintuplet centred on 1557.653 microHertz and some first harmonics of these. The amplitude of the pulsation is modulated with the rotation period of the star that we determine with 2.91179 +/- 0.00007 d from the analysis of the stellar pulsation spectrum and of the mean light data. We break the distorted oscillation mode up into its pure spherical harmonic components and find it is dominated by the l=1 pulsation, and also has a notable l=3 contribution, with weak l=0 and 2 components. The geometrical configuration of the star allows one to see both pulsation poles for about the same amount of time; HD 99563 is only the fourth roAp star for which both pulsation poles are seen and only the third where the distortion of the pulsation modes was modelled. We point out that HD 99563 is very similar to the well-studied roAp star HR 3831. Finally, we note that the visual companion of HD 99563 is located in the Delta Scuti instability strip and may thus show pulsation. We show that if the companion was physical, the roAp star would be a 2.03 solar mass object, seen at a rotational inclination of 44 degrees, which then predicts a magnetic obliquity of 86.4 degrees.Comment: 10 pages, 6 figures, accepted for publication by MNRA

    Extragalactic Globular Clusters in the Near-Infrared: V. IC 4051 and NGC 3311

    Full text link
    We present the results of combined optical and near-infrared photometry for the globular cluster systems of the giant ellipticals IC 4051 and NGC 3311. We use the reduced age-metallicity degeneracy in (V-I) vs.(V-H) color-color diagrams to derive the cumulative age distribution within the red sub-population of globular clusters and to search for age sub-populations. The age distribution is then compared to the one determined for simulated globular cluster systems in order to set constraints on the relative age and size of these globular cluster sub-populations. In both galaxies we find a significant fraction of globular clusters with ages between 2- 5 Gyr. We also investigate the metallicity distribution in both systems. Small number statistics prevent us from making any definite statements concerning NGC 3311, but we find that the derived metallicity distribution of the IC 4051 clusters strongly depends on the assumed age distribution. Based on our most likely result that finds a large number of young/intermediate age clusters (~2 Gyr) within the selected globular cluster sample, we find metallicity peaks at \sim -0.2 for the old clusters and +0.8 for the young clusters. Only few very metal poor clusters are found. However, the metallicity distribution within the young/intermediate globular cluster population is significantly affected by our choice of the applied Single Stellar Population model. The mean metallicity of the second generation of globular clusters changes from the above mentioned and extremely high +0.8 dex to +0.2 dex. Note that the model dependency becomes less severe with an increasing age of the cluster population.Comment: 21 pages, 21 figures, A&A, accepte

    Extinction ratios in the inner Galaxy as revealed by the VVV survey

    Get PDF
    Accepted for publication in ApJ Letters, 10 pages, 3 Figures, 2 Tables © 2017 The American Astronomical Society. All rights reserved.Interstellar extinction towards the Galactic Center is large and significantly differential. Its reddening and dimming effects in red clump stars in the Galactic Bulge can be exploited to better constrain the extinction law towards the innermost Galaxy. By virtue of a deep and complete catalog of more than 30 million objets at l2.7deg|l|\le2.7\deg and b1.55deg|b|\le1.55\deg obtained from VVV survey observations, we apply the red clump method to infer the selective-to-total extinction ratios in the ZZ, YY, JJ, HH and KsK_s broadband near-infrared filters. The measured values are smaller than previously reported, and are not constant, with mean values, e.g., AKS/E(JKs)=0.428±0.005±0.04A_{K_S}/E(J-K_s)=0.428\pm0.005\pm0.04 and AKS/E(HKs)=1.104±0.022±0.2A_{K_S}/E(H-K_s)=1.104\pm0.022\pm0.2. We also obtain a ratio AZA_Z:AYA_Y:AJA_J:AHA_H:AKSA_{K_S} of 7.74:5.38:3.30:1.88:1.0, implying extinction towards the Galactic Center to follow a distribution as a function of wavelength steeper than previously reported, consistent with a power law Aλλ2.47A_{\lambda}\propto{\lambda}^{-2.47} in the near-infrared.Peer reviewedFinal Accepted Versio
    corecore