20 research outputs found

    DN interaction from meson exchange

    Get PDF
    A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KbarN potential of the Juelich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (rho, omega) exchange and higher-order box diagrams involving D*N, D\Delta, and D*\Delta intermediate states. The coupling of DN to the pi-Lambda_c and pi-Sigma_c channels is taken into account. The interaction model generates the Lambda_c(2595) resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of an interaction model that is based on the leading-order Weinberg-Tomozawa term. Some features of the Lambda_c(2595) resonance are discussed and the role of the near-by pi-Sigma_c threshold is emphasized. Selected predictions of the orginal KbarN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Lambda(1405) resonance.Comment: 14 pages, 8 figure

    Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training

    No full text
    Background The function of local renin-angiotensin systems in skeletal muscle and adipose tissue remains largely unknown. A polymorphism of the human angiotensin converting enzyme (ACE) gene has been identified in which the insertion (I) rather than deletion (D) allele is associated with lower ACE activity in body tissues and increased response to some aspects of physical training. We studied the association between the ACE gene insertion or deletion polymorphism and changes in body composition related to an intensive exercise programme, to investigate the metabolic effects of local human renin-angiotensin systems. Methods We used three independent methods (bioimpedance, multiple skinfold-thickness assessment of whole-body composition, magnetic resonance imaging of the mid-thigh) to study changes in body composition in young male army recruits over 10 weeks of intensive physical training. Findings Participants with the II genotype had a greater anabolic response than those with one or more D alleles for fat mass (0·55 vs −0·20 kg, p=0·04 by bioimpedance) and non-fat mass (1·31 vs −0·15 kg, p=0·01 by bioimpedance). Changes in body morphology with training measured by the other methods were also dependent on genotype. Interpretation II genotype, as a marker of low ACE activity in body tissues, may conserve a positive energy balance during rigorous training, which suggests enhanced metabolic efficiency. This finding may explain some of the survival and functional benefits of therapy with ACE inhibitors
    corecore