473 research outputs found
Uniaxial pressure dependencies of the phase transitions in GdMnO
GdMnO shows an incommensurate antiferromagnetic order below
K, transforms into a canted A-type antiferromagnet below K, and for
finite magnetic fields along the b axis ferroelectric order occurs below
K. From high-resolution thermal expansion measurements along all
three principal axes, we determine the uniaxial pressure dependencies of the
various transition temperatures and discuss their correlation to changes of the
magnetic exchange couplings in MnO ().Comment: 2 pages, 3 figures, submitted to JMMM (Proceedings of ICM'06, Kyoto
Multiferroicity and colossal magneto-capacitance in Cr-thiospinels
The sulfur based Cr-spinels RCr2S4 with R = Cd and Hg exhibit the coexistence
of ferromagnetic and ferroelectric properties together with a pronounced
magnetocapacitive coupling. While in CdCr2S4 purely ferromagnetic order is
established, in HgCr2S4 a bond-frustrated magnetic ground state is realized,
which, however, easily can be driven towards a ferromagnetic configuration in
weak magnetic fields. This paper shall review our recent investigation for both
compounds. Besides the characterization of the magnetic properties, the complex
dielectric permittivity was studied by means of broadband dielectric
spectroscopy as well as measurements of polarization hysteresis and
pyro-currents. The observed colossal magneto-capacitive effect at the magnetic
transition seems to be driven by an enormous variation of the relaxation
dynamics.Comment: 10 pages, 11 figure
Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4
We present a detailed study of the dielectric and charge transport properties
of the antiferromagnetic cubic spinel HgCr2S4. Similar to the findings in
ferromagnetic CdCr2S4, the dielectric constant of HgCr2S4 becomes strongly
enhanced in the region below 60 - 80 K, which can be ascribed to polar
relaxational dynamics triggered by the onset of ferromagnetic correlations. In
addition, the observation of polarization hysteresis curves indicates the
development of ferroelectric order below about 70 K. Moreover, our
investigations in external magnetic fields up to 5 T reveal the simultaneous
occurrence of magnetocapacitance and magnetoresistance of truly colossal
magnitudes in this material.Comment: 4 pages, 4 figure
Spin-phonon coupling in antiferromagnetic chromium spinels
The temperature dependence of eigenfrequencies and intensities of the IR
active modes has been investigated for the antiferromagnetic chromium spinel
compounds CdCr2O4, ZnCr2O4, ZnCr2S4, ZnCr2Se4, and HgCr2S4 by IR spectroscopy
for temperatures from 5 K to 300 K. At the transition into the magnetically
ordered phases, and driven by spin-phonon coupling, most compounds reveal
significant splittings of the phonon modes. This is true for geometrically
frustrated CdCr2O4, and ZnCr2O4, for bond frustrated ZnCr2S4 and for ZnCr2Se4,
which also is bond frustrated, but dominated by ferromagnetic exchange. The
pattern of splitting is different for the different compounds and crucially
depends on the nature of frustration and of the resulting spin order. HgCr2S4,
which is almost ferromagnetic, exhibits no splitting of the eigenfrequencies,
but shows significant shifts due to ferromagnetic spin fluctuations.Comment: 15 pages, 6 figure
Multiferroic behavior in CdCr2X4 (X = S, Se)
The recently discovered multiferroic material CdCr2S4 shows a coexistence of
ferromagnetism and relaxor ferroelectricity together with a colossal
magnetocapacitive effect. The complex dielectric permittivity of this compound
and of the structurally related CdCr2Se4 was studied by means of broadband
dielectric spectroscopy using different electrode materials. The observed
magnetocapacitive coupling at the magnetic transition is driven by enormous
changes of the relaxation dynamics induced by the development of magnetic
order
Dielectric properties of charge ordered LuFe2O4 revisited: The apparent influence of contacts
We show results of broadband dielectric measurements on the charge ordered,
proposed to be mul- tiferroic material LuFe2O4. The temperature and frequency
dependence of the complex permittivity as investigated for temperatures above
and below the charge-oder transition near T_CO ~ 320 K and for frequencies up
to 1 GHz can be well described by a standard equivalent-circuit model
considering Maxwell-Wagner-type contacts and hopping induced AC-conductivity.
No pronounced contribution of intrinsic dipolar polarization could be found and
thus the ferroelectric character of the charge order in LuFe2O4 has to be
questioned.Comment: 4 pages, 3 figure
Group delay in THz spectroscopy with ultra-wideband log-spiral antennae
We report on the group delay observed in continuous-wave terahertz
spectroscopy based on photomixing with phase-sensitive homodyne detection. We
discuss the different contributions of the experimental setup to the phase
difference \Delta\phi(\nu) between transmitter arm and receiver arm. A simple
model based on three contributions yields a quantitative description of the
overall behavior of \Delta\phi(\nu). Firstly, the optical path-length
difference gives rise to a term linear in frequency. Secondly, the
ultra-wideband log-spiral antennae effectively radiate and receive in a
frequency-dependent active region, which in the most simple model is an annular
area with a circumference equal to the wavelength. The corresponding term
changes by roughly 6 pi between 100 GHz and 1 THz. The third contribution stems
from the photomixer impedance. In contrast, the derivative (d\Delta\phi / d\nu)
is dominated by the contribution of periodic modulations of \Delta\phi(\nu)
caused by standing waves, e.g., in the photomixers' Si lenses. Furthermore, we
discuss the Fourier-transformed spectra, which are equivalent to the waveform
in a time-domain experiment. In the time domain, the group delay introduced by
the log-spiral antennae gives rise to strongly chirped signals, in which low
frequencies are delayed. Correcting for the contributions of antennae and
photomixers yields sharp peaks or "pulses" and thus facilitates a
time-domain-like analysis of our continuous-wave data.Comment: 7 pages, 7 figure
- …