We report on the group delay observed in continuous-wave terahertz
spectroscopy based on photomixing with phase-sensitive homodyne detection. We
discuss the different contributions of the experimental setup to the phase
difference \Delta\phi(\nu) between transmitter arm and receiver arm. A simple
model based on three contributions yields a quantitative description of the
overall behavior of \Delta\phi(\nu). Firstly, the optical path-length
difference gives rise to a term linear in frequency. Secondly, the
ultra-wideband log-spiral antennae effectively radiate and receive in a
frequency-dependent active region, which in the most simple model is an annular
area with a circumference equal to the wavelength. The corresponding term
changes by roughly 6 pi between 100 GHz and 1 THz. The third contribution stems
from the photomixer impedance. In contrast, the derivative (d\Delta\phi / d\nu)
is dominated by the contribution of periodic modulations of \Delta\phi(\nu)
caused by standing waves, e.g., in the photomixers' Si lenses. Furthermore, we
discuss the Fourier-transformed spectra, which are equivalent to the waveform
in a time-domain experiment. In the time domain, the group delay introduced by
the log-spiral antennae gives rise to strongly chirped signals, in which low
frequencies are delayed. Correcting for the contributions of antennae and
photomixers yields sharp peaks or "pulses" and thus facilitates a
time-domain-like analysis of our continuous-wave data.Comment: 7 pages, 7 figure