90 research outputs found

    Improving Pulsar Timing through Interstellar Scatter Correction

    Get PDF
    Though pulsar timing has confirmed the existence of gravitational waves, no technique has directly detected them. Jenet et al. state the requirements for the Parkes Pulsar Timing Array (PPTA) to make a significant detection of the stochastic gravitational wave background within five years. By employing the scintillation information in observations for each pulsar at every epoch, I believe interstellar scattering, an underestimated source of timing noise, can be corrected enough for the PPTA to meet these requirements. The improved detection threshold will help answer important questions about black hole mergers, galaxy evolution, and gravitation

    Improving Pulsar Timing through Interstellar Scatter Correction

    Get PDF
    Though pulsar timing has confirmed the existence of gravitational waves, no technique has directly detected them. Jenet et al. state the requirements for the Parkes Pulsar Timing Array (PPTA) to make a significant detection of the stochastic gravitational wave background within five years. By employing the scintillation information in observations for each pulsar at every epoch, I believe interstellar scattering, an underestimated source of timing noise, can be corrected enough for the PPTA to meet these requirements. The improved detection threshold will help answer important questions about black hole mergers, galaxy evolution, and gravitation

    A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers

    Get PDF
    We present the first surrogate model for gravitational waveforms from the coalescence of precessing binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling numerical relativity waveforms without introducing phenomenological assumptions or approximations to general relativity. Motivated by GW150914, LIGO's first detection of gravitational waves from merging black holes, the model is built from a set of 276276 numerical relativity (NR) simulations with mass ratios q2q \leq 2, dimensionless spin magnitudes up to 0.80.8, and the restriction that the initial spin of the smaller black hole lies along the axis of orbital angular momentum. It produces waveforms which begin 30\sim 30 gravitational wave cycles before merger and continue through ringdown, and which contain the effects of precession as well as all {2,3}\ell \in \{2, 3\} spin-weighted spherical-harmonic modes. We perform cross-validation studies to compare the model to NR waveforms \emph{not} used to build the model, and find a better agreement within the parameter range of the model than other, state-of-the-art precessing waveform models, with typical mismatches of 10310^{-3}. We also construct a frequency domain surrogate model (called NRSur4d2s_FDROM) which can be evaluated in 50ms50\, \mathrm{ms} and is suitable for performing parameter estimation studies on gravitational wave detections similar to GW150914.Comment: 34 pages, 26 figure

    Fast and accurate prediction of numerical relativity waveforms from binary black hole coalescences using surrogate models

    Get PDF
    Simulating a binary black hole (BBH) coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from non-spinning BBH coalescences with mass ratios in [1,10][1, 10] and durations corresponding to about 1515 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms {\em not} used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic 2Ym{}_{-2}Y_{\ell m} waveform modes resolved by the NR code up to =8.\ell=8. We compare our surrogate model to Effective One Body waveforms from 5050-300M300 M_\odot for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).Comment: Updated to published version, which includes a section comparing the surrogate and effective-one-body models. The surrogate is publicly available for download at http://www.black-holes.org/surrogates/ . 6 pages, 6 figure

    Improved methods for simulating nearly extremal binary black holes

    Get PDF
    Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass mm and spin SS exceeding the Bowen-York limit of S/m2=0.93S/m^2=0.93. We present improved methods that enable us to simulate merging, nearly extremal black holes more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S/m2=0.99S/m^2=0.99. We also use these methods to simulate a non-precessing binary black hole coalescence, where both black holes have S/m2=0.994S/m^2=0.994, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black-hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called "orbital hangup" effect).Comment: 18 pages, 18 figure

    Accuracy of binary black hole waveform models for aligned-spin binaries

    Get PDF
    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave (GW) detectors. Reliable GW models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 8484 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (1m1/m231\le m_1/m_2\le 3), and samples independently both black hole spins up to dimensionless spin-magnitude of 0.90.9 for equal-mass binaries and 0.850.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass 50M\gtrsim 50M_\odot). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5\% of the recoverable signal-to-noise ratio ρ\rho, except that SEOBNRv2's efficiency drops mildly for both black hole spins aligned with large magnitude. For parameter estimation, modeling inaccuracies of SEOBNRv2 are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ15\rho\lesssim 15. PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ20\rho\lesssim 20. Both models' accuracy deteriorates with increased mass-ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all GW models during parameter estimation for recovery of binary's masses and spins.Comment: 24 pages, 15 figures, minor change

    On the accuracy and precision of numerical waveforms: Effect of waveform extraction methodology

    Get PDF
    We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1 to 3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e<104e<10^{-4}. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q=10q=10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques, extrapolation, and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors somewhat dominating at noise-weighted mismatches of 3×104\sim 3\times 10^{-4}. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.Comment: 22 pages, 9 figure

    Periastron Advance in Spinning Black Hole Binaries: Gravitational Self-Force from Numerical Relativity

    Get PDF
    We study the general relativistic periastron advance in spinning black hole binaries on quasi-circular orbits, with spins aligned or anti-aligned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies' labels, we devise an improved version of the perturbative result, and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a non-spinning particle orbiting a Kerr black hole of mass M and spin S = -0.5 M^2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.Comment: 18 pages, 12 figures; matches version to appear in Phys. Rev.

    Modeling the source of GW150914 with targeted numerical-relativity simulations

    Get PDF
    In fall of 2015, the two LIGO detectors measured the gravitational wave signal GW150914, which originated from a pair of merging black holes. In the final 0.2 seconds (about 8 gravitational-wave cycles) before the amplitude reached its maximum, the observed signal swept up in amplitude and frequency, from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging black holes, as predicted by general relativity, can be computed only by full numerical relativity, because analytic approximations fail near the time of merger. Moreover, the nearly-equal masses, moderate spins, and small number of orbits of GW150914 are especially straightforward and efficient to simulate with modern numerical-relativity codes. In this paper, we report the modeling of GW150914 with numerical-relativity simulations, using black-hole masses and spins consistent with those inferred from LIGO's measurement. In particular, we employ two independent numerical-relativity codes that use completely different analytical and numerical methods to model the same merging black holes and to compute the emitted gravitational waveform; we find excellent agreement between the waveforms produced by the two independent codes. These results demonstrate the validity, impact, and potential of current and future studies using rapid-response, targeted numerical-relativity simulations for better understanding gravitational-wave observations.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravit
    corecore