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Chapter 1

Introduction

1.1 Pulsars and the Interstellar Medium

Pulsars were once stars more massive than our Sun, supported by thermal pressure fueled by
nuclear interactions in their cores. During the tumult of a supernova, their cores collapsed
and gravity overcame electromagnetic repulsion and electron degeneracy pressure. The
electrons were smashed into the protons, creating a neutron superfluid. There are so many
neutrons in such a small volume that pulsars are held from the brink of collapse into a black
hole by neutron degeneracy pressure. These unfathomably dense stars are about the size of
Cleveland and have masses not much greater than our Sun, yet some perform a full rotation
in about a millisecond.

Fascination is not the only reason astrophysicists study pulsars; they are useful too.
Pulsars emit a characteristic “lighthouse” beam with extraordinary periodicity. This beam
is received by radio telescopes as pulses of power and can reveal a wealth of information
about pulsars and fundamental processes in the universe.

No matter how well a telescope can resolve an area of the sky, there are two intrinsic
reasons why the received signal is distorted: dispersion and scattering. If the signal traveled
through vacuum, there would be no distortion. But interstellar space is filled with gas, dust,
and free electrons. These constitute the interstellar medium (ISM), which is an important
component of our galaxy, but a fundamental hindrance in radio frequency observations.

Free electrons slow the propagation of electromagnetic waves, delaying most those with
low frequencies. This is dispersion. Its mathematical effect is a convolution of the detected
signal with a chirp function, which can be undone with great accuracy if the column density
of electrons between the telescope and the pulsar is known [1]. One can take the Fourier
Transform of the detected signal and the chirp function and then take the inverse Fourier
Transform of their quotient. This deconvolution technique yields a coherently dedispersed
signal.

Dedispersion is simple because dispersion is deterministic, but it is still a challenge to
1
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determine the column density of electrons, also known as Dispersion Measure (DM),

DM =
∫

ne d`. (1.1)

We must also grapple with scattering, which causes interference between radio waves that
have taken distinct paths through the ISM. The effect of scattering is a convolution of the
intrinsic pulsar signal, i(t), with the impulse response of the ISM [2], h(t),

i(t) ISM−−→ i(t) ∗ h(t). (1.2)

One difficulty with descattering lies in the stochastic nature of scattering. Since scat-
tering is strongest at low frequencies, astronomers tend to observe at higher radio frequencies
when they need to limit its effects. Such is the case with high-precision pulsar timing. There
is a tradeoff at high frequencies, though: the effects of scattering are limited, but signal
strength, which falls rapidly as frequency increases, is sacrificed. Another difficulty is that
the impulse response is not an observable. What we can measure is its autocorrelation
function, Rh(t),

Rh(t) =
∫

h(t′)h(t′ + t) dt′. (1.3)

This quantity is the staple of my thesis and will be used throughout.

Because a pulsar is essentially a point source, interference caused by scattering in
the turbulent ISM modulates the signal intensity, which is an effect called scintillation.
If the turbulence can be characterized by a Kolmogorov distribution of inhomogeneities
in the ISM, then scintillation produces parabolic arcs in the power spectrum of a pulsar’s
dynamic spectrum [3]. Sources of pulse power (called “arclets”) have recently been discovered
along these arcs and are thought to arise from scattering off compact (AU-sized), overdense
structures in the ISM [4]. Arclet power persists to large time delays and is not predicted in
conventional models of the ISM.

Pulsars are high-velocity objectsa, so they rapidly probe the spatial structure of the
ISM as they move across the sky. This changes the column density of electrons (the DM)
as well as the volume of inhomogeneities that contributes to scattering. The result is a
time-variable delay of the pulsar signal from propagation through the ISM.

1.2 Pulsar Timing and Gravitational Waves

Gravitational-wave (GW) astronomy promises to usher in a new era of scientific understand-
ing. Until recently, we have been content to see the world with electromagnetic eyes. Our
discontent emerged when we discovered that some wonders in the universe reveal themselves
only to those who see with gravitational eyes. GW detection is nothing like the discovery

aThe median pulsar velocity is 350 km/s [5].
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of a new electromagnetic band. The most cataclysmic events in the history of the universe
are linked to us gravitationally, but obscured electromagnetically – the Big Bang, inflation,
the merger of supermassive black holes. An undiscovered universe waits to be found. All
we need to do is open our gravitational eyes.

Gravitational radiation is analogous to dipole radiation in electromagnetism, except
GWs are quadrupolar to leading order [6]. Their quadrupole nature and the weakness of
the gravitational interaction indicate that large masses with relativistic accelerations are
required to produce them. Much like pulsars, it is unlikely that GWs will ever be studied
in a laboratory.

However, pulsars can be used as a remote laboratory for studying GWs because they
are extremely stable clocks. They have already provided evidence for the existence of GWs
through the orbital decay of binary pulsar systems, and they have been instrumental in the
most thorough tests of General Relativity to date [7;8].

A plane GW can change the propagation time of a pulsar signal by perturbing the
spacetime of the pulsar at the time of emission and the earth at the time of reception. These
perturbations will be correlated between different pulsars, and a set of pulsars used to detect
this correlation is called a Pulsar Timing Array (PTA) – a high-precision interferometric
GW detector built for us by nature! PTAs uniquely detect nanoHertz GWs, complementing
the higher frequency detectors (LIGO, LISA, etc.).

While not yet sensitive enough to detect an individual GW, PTAs are within range to
detect a stochastic GW background produced primarily by massive black hole (BH) inter-
actions in galactic mergers. A detection would allow us to better understand the galactic
merger history – which defines the morphology of present-day galaxies – and also limit the
efficiency of BH mergers and the ubiquity of BHs in low-redshift galaxies [9]. Competing
theories of gravity can be tested by the GW backgrounds they predict from BH mergers.

Many sources of random and systematic error are corrected for in pulsar timing, but
scattering in the ISM is not. However, pulsar timing is approaching a level of precision
where interstellar scattering is significant, and there is evidence that the effect may be
bigger than previously thought. For example, the substantive effect of arclets on pulsar
timing is overlooked.

To see how scattering manifests itself in a PTA, we must first understand the timing
procedure. The observable in a pulsar timing observation is the pulse intensity, I ∝ |E|2.
A pulse profile is obtained by folding about five minutes of intensity data over the pulsar’s
period, which must be carefully adjusted for the motion of the observatory relative to an
inertial reference frame. Each epoch is assigned a time of arrival (TOA), which is calculated
from the lag of maximum cross-correlation between the pulse profile and a standard profile
(an ideal and static representation of the pulse profile). The topocentric TOA must then be
converted into a proper time of emission at the pulsar, correcting for systematic effects by
a least-squares fitting procedure [10]. The ultimate quantity, a set of timing residuals ∆tj ,



4 CHAPTER 1. INTRODUCTION

is derived by differencing a set of proper emission times, tj , and a fiducial emission period,
T .

∆tj = tj − j T (1.4)

Aptly named, it comprises the residual error of the timing procedure.

Multi-year residuals of a PTA are searched for correlated nanoHertz signals. The
correlation and accompanying significance establish an upper bound for or detection of a
stochastic GW background [11]. Interstellar scattering reduces the correlation by introducing
uncorrelated delays from pulsar to pulsar and epoch to epoch. The focus of my research
is to identify and correct for this effect so as to improve the sensitivity of PTAs to GW
perturbations.

1.3 Project Summary and Results

Though pulsar timing has confirmed the existence of gravitational waves [10], no technique
has directly detected them. Jenet et al. [11] state the requirements for the Parkes Pulsar
Timing Array (PPTA) to make a significant detection of the stochastic gravitational wave
background within five years. By employing the scintillation information in observations
for each pulsar at every epoch, I believe interstellar scattering, an underestimated source of
timing noise, can be corrected enough for the PPTA to meet these requirements. The im-
proved detection threshold will help answer important questions about black hole mergers,
galaxy evolution, and gravitation.

I have approached this problem in three different ways, using the tools of observational,
theoretical, and computational physics:

1) an observational study of pulsar scintillation data,

2) a primarily analytic study of the effect of scattering on pulse time of arrivals, and

3) a simulation of wave propagation through random, dispersive media.

The results are summarized immediately below, but are expounded in Chapters 3, 4, and 5
respectively. In Chapter 2, I provide background information for the three results chapters.

The convolution of a pulsar’s intrinsic pulse with the impulse response of the ISM
perturbs the pulse center by introducing a temporal shift and a broadening. These effects
fluctuate between observations because the pulsar rapidly probes the spatial structure of the
ISM due to its high velocity. The spatial variation in the ISM becomes a time-variability in
the pulse power, especially as arclets translate along the scintillation arc [4]. Therefore, the
TOA of the pulse will also vary in a way that can be approximated with the scintillation
information in the power spectrum of the pulsar’s dynamic spectrum.
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In Chapter 3, the variability of delay is quantified for the pulsar PSR B1737+13.
Careful attention is paid to noise in the data because the delay is heavily influenced by low-
level power. Arclets are shown to be the major low-level contributor to the delay. Temporal
partitioning of the observations and multi-frequency analysis allows us to comment on the
robustness and uncertainty in our technique. The measurements are intended to be used as
a scatter-correction for pulsar timing residuals.

We must justify our measurements as scattering delays. To do so, in Chapter 4 we
construct a simplified model of the impulse response, parameterized by a width τ and an
offset t0, to determine precisely how scattering in this t0τ Model affects pulsar timing. In
any observationally relevant regime, the induced delay is given by the centroid of the impulse
response, Γh = t0 + τ . Furthermore, if the impulse response is narrow enough, its effect on
the pulse is merely a shift in time by the centroid. Without any broadening, time-domain
efforts to detect this delay are impotent and our spectral analysis becomes crucial.

The observational method cannot determine a t0 component of the impulse response
centroid, and the t0τ Model does not constrain the behavior of t0. To account for this,
we must either find a way to remove the offset or determine some statistical properties of
t0 to correct the timing residuals with the information that is available. Thus the wave-
propagation simulation is used in Chapter 5 to bridge the gap between the observationally
determined delay and the t0τ Model. Dedispersing the simulation data removes an offset t0

(or reduces it to a level where it could be corrected for statistically). With this last piece in
place, we are justified in using our observational method to determine an interstellar delay
that can be used to correct timing residuals.

I believe this correction can benefit PTAs. Jenet et al. [11] show that a PTA of 40
pulsars with residuals smaller than 100 ns could make a direct detection of the predicted
GW background within five years. The PPTA is striving to meet these constraints, but
does not yet have sufficient timing precision. This research has determined that scattering
delay can vary on the microsecond level, so a scatter correction will be necessary to achieve
100 ns residuals for many pulsars. If dynamic spectra are obtained during each timing
observation, then scattering delays can be calculated with the algorithm presented in §3.1
and subtracted from the timing residuals. Because the uncorrected residuals are comparable
in magnitude to the scattering delay variations, the correction could reduce the residuals to
below 100 ns, thus increasing the fractional contribution of the GW background to a level
the PPTA can detect.

Whether elucidating astrophysical processes, supplementing electromagnetic wave ob-
servations, or probing the early universe, GW detections would prove observationally indis-
pensable and revolutionary in their scientific consequences.
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Chapter 2

Background

Propagation effects have been an important topic in the study of pulsars [1;12]. At the most
rigorous level they have prompted the simulation of wave propagation in random dispersive
media [13–15]. There has been discussion about interstellar optics [16], the impulse response
of the ISM [17], and various time domain effects [18].

Because scintillation theory [19;20] and observation [21–23] are so inextricably entwined
with the structure of the ISM [24–30], the analysis techniques have become quite advanced.
The maturation of this field can be seen in the analysis of the power spectrum of the pulsar’s
dynamic spectrum [2;3;31–35].

Great strides in the understanding of the ISM have improved the use of pulsars as
extremely stable clocks [10;36;37]. As the creative application of pulsars burgeoned, it was
realized that gravitational wave backgrounds [9] could be detected using pulsar timing ar-
rays [11;38–41] in a complementary regime to the man-made gravitational wave detectors.
However, timing noise is a limiting factor, and recent analysis has shown that time-variable
ISM propagation delays are emerging as a major problem [42]. Much of the success of pulsar
timing has relied on the analysis of dispersive propagation effects [42–46], but analyses of
scattering [47–49] have yet to be used significantly by the pulsar timing community.

2.1 Scintillation in the ISM

Dispersion Measure (DM) is the integrated electron density, ne, along the line of sight
between two points separated by a distance D,

DM =
∫ D

0
ne d`. (2.1)

The effects of DM can be approximated by rearranging the distribution of electrons along
the line of sight so that all the electrons are localized in a two-dimensional screen [49] as in
Figure 2.1. Pulsars are high-velocity objects, so as they move across the sky, they rapidly

7
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sample the spatial structure of the screen, which is essentially frozen because the timescale
for variation in the ISM is so longa.

Refraction in the screen allows rays propagating from the pulsar in multiple directions
to reach the Earth. The length scale of the screen at which refracted rays focus as the Earth
is called the refractive scale, sr. It is given by

sr ≈ Dsθd, (2.2)

where Ds is the distance from the Earth to the screen and θd is the angle that subtends the
refractive scale (see Fig. 2.1). Schematically, the screen acts like a link of converging and
diverging lenses, and the refractive scale is the length of these lenses. Of course there are
many size scales in the ISM, but the ones bigger and smaller than sr do not have a focal
point at the observer.

Figure 2.1 – A schematic of the thin-screen model. Rays from the pulsar reach the screen parallel
to each other because the pulsar is a great distance from the screen. Each ray is refracted by
no more than an angle θr. The diffractive angle, θd, subtends the refractive scale of the screen,
sr, which spans the length of a converging or diverging lens-like structure. Because the pulsar
moves at a high velocity (which we assume to dominate the motion of the system), the area of
the screen sampled by the pulsar changes with time.

The diffractive scale is described by the small-angle approximation of the ubiquitous
diffraction formula,

sd θd ≈ λ. (2.3)

More precisely, the expression for sd is [50]

sd = 2sF

[
1

m2
B

cos
(απ

4

)
Γ
(
1 +

α

2

)]1/α

, (2.4)

where sF =
√

λDs is the Fresnel scale, α is the spectral slope of the screen, Γ(X) = (X−1)!
is the Gamma function, and m2

B is the Born Scattering Index. The DM of the screen induces

aThe thermal speed in the ISM is about 10 km/s, and the length scale is about 6 AU, thus the thermal

timescale is about 6 years.
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a phase change of the incoming wave,

∆φ =
e2DM

4πε0mec

1
ν

, (2.5)

and the diffractive scale is the distance over which the observed ∆φ changes by 1 radian (at
a typical wavelength).

The diffractive and refractive scales are related by

srsd = s2
F . (2.6)

As the scattering strength m2
B increases, the diffractive scale will shorten and the refractive

scale will lengthen. Rays will be refracted by larger angles and the phase of the observed
interference pattern will vary more rapidly.

Because of refraction, the point-like image of the pulsar is broadened. The scattered-
broadened image, the Scattered Brightness, of the pulsar is the Fourier Transform (FT) of
the spatial ACF of the observed electric field and is typically on the milliarcsecond scale.
Without a scattering screen, the pulsar image would be micro- or nanoarcseconds in size.
In an important model for this thesis, the Scattered Brightness is a Gaussian.

Observation has shown that a Gaussian Scattered Brightness alone is insufficient to
reproduce a crucial observed phenomenon called a scintillation arc, which is a parabolic
arc in the power spectrum of the pulsar’s dynamic spectrum (the Secondary Spectrum) [31].
Parabolic arcs arise from interference between a Gaussian core and low-level power in a dif-
fuse halo. A Kolmogorov Scattered Brightness has a core-halo character, and thus produces
scintillation arcs. The fundamental difference between Gaussian and Kolmogorov Scattered
Brightness functions is in the spectral slope of the scattering screen that gives rise to them.
The screen for the Gaussian has a spectral slope of α = 2 and for Kolmogorov it has a
shallower slope of α = 5/3.

Smaller inverted parabolas along the scintillation arc (called arclets) often appear in
the Secondary Spectrum and can be produced by interference between discrete features in
the Scattered Brightness of a pulsar. Pure Kolmogorov turbulence cannot produce this
behavior, but discrete objects embedded within the Kolmogorov turbulence can cause the
Scattered Brightness of the pulsar to be broken into discrete pieces. Hill et al. [4] suggest
that these objects are compact (AU-sized), overdense structures in the ISMb. As the pulsar
and ISM translate with respect to the Earth, the arclets translate along the scintillation
arc, suggesting that the pulsar can probe these structures.

It is important to know what the axes of the Secondary Spectrum represent. If the
dimensions of the dynamic spectrum are frequency ν and time t, then the Secondary Spec-
trum has dimensions fν and ft, the Fourier conjugates of frequency and time. However, this
is not very elucidating, and our analysis relies heavily on the interpretation of the conjugate

bIt remains a mystery how such structures are created and sustained.
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frequency as a delay. The geometric path length difference between two rays (coming from
a pulsar at infinity) refracted towards the Earth (as in Fig. 2.1) is

∆L = Ds(cos θr,2 − cos θr,1) (2.7)

≈ Ds

2
(θ2

r,2 − θ2
r,1), (2.8)

The difference in propagation time of these two rays is then

∆T = ∆L/c (2.9)

≈ Ds

2c
(θ2

r,2 − θ2
r,1), (2.10)

which is the equation for the Fourier conjugate of frequency [31], fν . Thus the fν axis of
the Secondary Spectrum is a differential delay. The θ2 dependence of fν compared to the θ

dependence of ft causes the parabolic arcs in the Secondary Spectrum.

ACF←−− E(t, ν) → I(t, ν)
ACF−−→ RI(t, ν) 7→ RI(0, ν) ← RE(0, ν) ←[ RE(t, ν)

�� �� �� �� �� ��

← Ẽ(ft, fν)
ACF−−→ Ĩ(ft, fν) → PI(ft, fν) ⇒ Rh(t)

ACF←−− h(t) ⇐ PE(ft, fν)

Table 2.1 – Relationships to the observed Electric Field, E(t, ν). The symbol → represents a
modulus square, ⇒ represents integration over the conjugate time variable, 7→ represents the
t = 0 slice of a function, � represents a Fourier Transform, and ACF−−→ represents an ACF. Implicit
in these relationships is the assumption of strong scattering. Note that the mapping is cylindrical
(the left wraps around to the right).

2.2 Pulsar Timing Arrays and Gravitational Waves

Linearized gravity is sufficient to predict GWs [6]. The linearization of the spacetime metric
gµν is a small perturbation hµν to flat spacetime ηµν ,

gµν = ηµν + hµν . (2.11)

In the transverse-traceless (TT) gauge, the metric perturbation hµν is purely spatial, htt =
hti = 0, traceless, h = h i

i = 0, and transverse to the propagation vector k, ∂khij = 0. The
linearized geodesic equation in TT gauge is

d2xi

dt2
= 0, (2.12)

where t is coordinate time. Thus the coordinate separation between two objects, Lc, is
unaffected by a GW. However, the proper separation, L, oscillates. For a GW propagating
along the z-axis, k̂ = ẑ, with two objects separated by a coordinate distance Lc on the
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x-axis, their proper separation is

L =
∫ Lc

0
dx
√

gxx (2.13)

=
√

1 + hxx

∫ Lc

0
dx (2.14)

≈
(

1 +
1
2
hxx

)
Lc (2.15)

by the binomial theorem, since h � 1 is a small perturbation. The non-zero terms of hµν

are sinusoidal [6], so the proper separation oscillates. The fractional change in separation is
then

δL

Lc
≈ 1

2
||hxx||. (2.16)

When a GW perturbs the spacetime metric, the distance between the Earth and a pulsar at
the time of emission and reception of a pulse could differ by as much as the metric strain,
||hxx||.

In pulsar timing, we need to know how the separation changes over time,

d

dt
(δL) =

1
2

[hxx(te)− hxx(tr)] , (2.17)

where te is the time of emission and tr is the time of reception (at the Earth). The metric
strain at any other time is inconsequential. When considering a stochastic background of
GWs, the first term will be uncorrelated between pulsars because of their spatial separation,
but the second term will have an angularly dependent correlation.

To determine this correlation, let ∆tm,n be the mth timing residual of the nth pulsar,
where m = 1, . . . ,M , and n = 1, . . . , N . Each pulsar has an associated position vector kn

with respect to the Earth. The angle between a pair of pulsars is θ = arccos(k̂1 · k̂2), and
the correlation coefficient between the M timing residuals of these two pulsars is

r(θ) =
1
M

M∑
m=1

∆tm,1∆tm,2 (2.18)

In the presence of an isotropic GW background, the ensemble-averaged correlation coeffi-
cient (the average over all pairs of pulsars as N →∞) is

〈r(θ)〉 = ∆trms

[
x

4
(6 log x− 1) +

1
2

(1 + δ)
]

, (2.19)

where x = 1
2(1− cos θ) and δ = δ(x) is the Dirac delta function [11] (see Fig. 2.2). Deviation

from the predicted timing residual correlation is caused by sources of timing noise beyond a
GW background. We are interested in the effect of timing noise in the guise of interstellar
propagation delays, which are uncorrelated from pulsar to pulsar.
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Figure 2.2 – The correlation coefficient between the sets of timing residuals for a pair of pulsars,
separated by an angle θ (in radians), due to an isotropic stochastic GW background.



Chapter 3

Timing Analysis of PSR B1737+13

The pulsar PSR B1737+13 (abbreviated B1737) was observed 36 times over 38.5 weeks by
Daniel Stinebring (Oberlin College) using the radio telescope at Arecibo Observatory. This
pulsar was chosen for study because of the dynamic structure in its Secondary Spectrum.
Indeed, the data revealed some Secondary Spectra with sharp, well-defined scintillation arcs
and arclets while others were blurry and patchy; some had significant low-level power at
high delay while others were concentrated near the origin, t = 0.

We applied a noise reduction algorithm to each Secondary Spectrum and then inte-
grated over all fringe frequencies. The resulting quantity (power as a function of time delay)
is the power spectrum of the electric field spectrum intensity and, equivalently, the auto-
correlation function of the impulse response [1] (see Table 2.1). We used the centroid of this
function as a measure of characteristic delay induced by the ISM. This relationship arises
because the spectral domain discards all information about pulse shape. The observed pulse
p(t), like any signal, is an infinite series of impulses (see Fig. 3.1), and thus the spectrum
we collect is of an impulse propagating through the ISM.

p(t)

Figure 3.1 – The observed pulse, p(t), is an infinite series of impulses. A caricature of this concept
is shown here.

The centroid was plotted as a function of frequency and day of observation. Several
major trends were discerned, whose details will be discussed in §3.2:

13
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1) The centroids displayed an appropriate frequency scaling for scattering delays.

2) The centroid variation was consistently measurable, and the weekly variation was
significantly greater than the variation during a single observation.

3) The cumulative delay identified the effect of patches of power on the centroid and
tested the noise reduction algorithm (specifically, how well the background noise was
removed).

Why do we call this centroid the delay induced by the ISM? The method to determine
the centroid is not very elucidating, but we can transparently justify its use in a few careful
steps. Motivated by the B1737 data, we invoke a t0τ Model of the ISM in Chapter 4 to
illuminate the path. In §§3.1 and 3.2, we present the observational method and results
of the B1737 analysis. It will be used as a concrete reference for the following theoretical
treatments.

3.1 Observational Method

We begin with a dynamic spectrum of pulsar B1737, which is the pulse intensity as a function
of frequency and time, I(t, ν). Each time sample is a 10 second integration of the off-pulse
spectrum subtracted from the on-pulse spectrum. At 6 samples per minute, each hour-long
observation comprises about 360 spectra. The signal was monitored with a bandwidth of 50
MHz (partitioned into 2048 channels) around four different center frequencies: 1175, 1380,
1425, and 1470 MHz and processed with the Wideband Arecibo Pulsar Processor (WAPP)
spectrometers.

The dynamic spectra display intricate interference patterns that vary dramatically
between observations. Features called scintles, which are ellipsoidal intensity maxima, as
well as striated crosshatchings are prominent in most. We take the square modulus of the
2D Fourier Transform (the power spectrum) of the dynamic spectrum to get the secondary
spectrum.

PI(ft, fν) = |Ĩ(ft, fν)|2 (3.1)

The secondary spectra display scintillation arcs as discussed in §2.1. Some have sharp,
well-defined arclets along the parabolic arc, whereas others are patchy and blurry. Some
show power out to high delay; others are concentrated at zero delay. We often display a
logarithmic power representation of the secondary spectrum, which accentuates the high-
delay power that is completely hidden in linear plots. Only a small percentage (0.1 to 1
percent) of the power arrives after the initial spike.

Regardless of display, it remains true that there is power at high-delay. We are in-
terested in a measure of the average delay of power in the secondary spectrum, and the
centroid is our tool to measure it. There may not be much power at high delay, but its
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large lever-arm allows small amounts of power to contribute substantially to the centroid.
Noise, the non-zero mean background in particular, presents a significant problem for this
reason. If we are to accurately determine a centroid of the signal, we must remove the noise.

The robustness of spectral analysis is epitomized when a defective dynamic spectrum
generates a typical secondary spectrum. The defects that ruin a dynamic spectrum do
not necessarily destroy the underlying periodicities. However, one needs to be careful with
discrete Fourier Transforms (DFT) because they assume a tiling of the signal. The same
periodicities that made the secondary spectrum so robust can introduce FT artifact, such
as overlap and sidelobes, which are minimized by windowing the dynamic spectruma. We
employ the “Hanning” window (Fig. 3.2).
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Figure 3.2 – The Hanning window (LEFT) multiplies the dynamic spectrum to reduce overlap and
sidelobes in its Fourier Transform. Sidelobe attenuation is -31.5 dB, but the window introduces a
broadening in the transform domain (RIGHT) due to its spectral width. The width is 4 percent
of the band at -3 dB.

There are two main sources of noise in the secondary spectrum: background and FT
artifacts. Because power is concentrated along the scintillation arc, there will always be
regions of pixels that have an insubstantial contribution from the signal. By averaging
the power in these select regions, we get an accurate measure of the background noise
level, which is subtracted from every pixel in the secondary spectrum. Many methods of
background noise estimation have been tried, but this one is the most universally successful.
The Fourier Transform artifacts comprise a horizontal and vertical spike through the origin.
The horizontal spike is removed by subtracting the average power in each row (near the
origin) in a signal-free region from every pixel in the row. The vertical spike is the most
negligible problem because it affects few to no pixels. If the noise reduction algorithm

aWe must be very careful here too. Every manipulation to a signal, even the seemingly benign (like zero

padding or resampling), has a corresponding effect in the transform domain. Everything has a trade-off.

For example, windowing in one domain is equal to convolving the FT of the signal and the window in the

transform domain. A window function will broaden the signal or introduce sidelobes. Choose the lesser evil

for the application.
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detects it, then the infected pixels are set to zero power. These regions are shown on the
left in Figure 3.3.

Figure 3.3 – LEFT: The Secondary Spectrum (from the 1425 MHz band on Day 122) shown
before noise reduction. The red boxes indicate the regions used for background noise analysis,
the white and black boxes for Fourier Transform artifact removal. RIGHT: The noise-reduced
Secondary Spectrum. Because power is displayed logarithmically, but is not positive definite
after processing, a lower bound was arbitrarily chosen. All values below that lower bound are
colored identically to the lower bound. The effects of noise reduction are invisible on a linear
power scale.

Once the mean background noise is subtracted and the artifacts are removed, the
background fluctuates around zero power. This makes it difficult to display the noise-
reduced secondary spectrum logarithmically because there are pixels with negative values.
Nonetheless, raw and noise-reduced secondary spectra are shown in Figure 3.3.

From the noise-reduced secondary spectrum, PI(ft, fν), we integrate over all fringe
frequencies (conjugate time, ft) to get power as a function of delay only,

Rh(t) =
∫

PI(ft, fν) dft, (3.2)

which is the ACF of the Impulse Response of the ISM (see Table 2.1). Then we calculate the
integral of power with respect to delay as a function of the upper bound of delay (normalized
by the total power). We call this the cumulative delay function. If T is the upper bound of
delay, then cumulative delay is

ΓRh
(T ) =

∫ T
0 tRh(t) dt∫ T
0 Rh(t) dt

. (3.3)
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Thus, the characteristic delay induced by scattering, called ΓR, is the centroid of Rh(t),

ΓR = lim
T→∞

ΓRh
(T ) (3.4)

=

∫∞
0 tRh(t) dt∫∞
0 Rh(t) dt

(3.5)

The integral is expected to converge even in our finite delay interval (Tmax = 20.4 µs in the
B1737 data), but if it doesn’t, then the maximum value of the function on the interval is
used as a lower bound for ΓR.

Cumulative delay provides an important check of the noise reduction algorithm. We
expect the power to diminish completely at sufficiently high delays, and therefore the cu-
mulative delay should plateau. Barring a legitimate deviation from this assumption, we
can tell if the background noise was successfully removed. If the cumulative delay never
plateaus, then we have underestimated the background noise (because it continues to add
more power at higher delays). If we have overestimated the background noise, the cumu-
lative delay peaks and then begins to decline (because the background assumes a negative
average). The slope of the cumulative delay where we expect no signal represents the fac-
tor by which the background noise was misestimated. Only successful background noise
reduction will yield a zero-mean background and permit convergence of the cumulative
delay.

We contrast the centroid analysis with another method used to calculate a time delay,
which in the literature is called τscatt. Given the two-dimensional ACF of a dynamic spec-
trum, RI(t, ν), the diffractive bandwidth, ∆νd, is the half-width at half-maximum (HWHM)
of the zero time-lag slice, RI(0,∆νd) = 1

2RI(0, 0). Then

τscatt ≡
1

2π∆νd
. (3.6)

This definition is used because the Dynamic Spectrum ACF and the secondary spectrum
are Fourier Transform pairsb, and thus obey the Localization Property [51]. To ensure that
the methods are compared on an equal footing, the noise-reduced Secondary Spectrum is
Fourier transformed to create the Dynamic Spectrum ACF.

RI(t, ν) = P̃I(t, ν) (3.7)

Though we used each dynamic spectrum as a whole, the analysis was repeated for
temporal subsets. Specifically, the dynamic spectra were each partitioned into three spectra,

bThis definition of τscatt is exactly ΓR when the ACF of the Impulse Response is a double-sided exponential

because the transform of a double-sided exponential (a Lorentzian function)

e−|t|/τ �
2τ

1 + (2πντ)2

is at half its initial height when ν = 1/(2πτ). This is the scenario of our t0τ Model.
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with every partition spanning half an observation (and the entire spectrum). While the three
dynamic spectra often displayed significantly different interference patterns, the associated
secondary spectra changed imperceptibly (see Fig. 3.4). This consistency testifies to the
constancy of the underlying periodicities on the timescale of a single observation. The
partitioning also provides a way to monitor breakdowns in the analysis. If there is a defect
in one of the spectra or if the noise reduction fails, then comparing three (semi-)independent
realizations of the observation helps identify anomalous behavior. Without partitioning,
there is no method to estimate the uncertainty in ΓR.
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Figure 3.4 – Partitioning of the 1470 MHz observation on Day 0 into three time intervals. TOP:
Three dynamic spectra. BOTTOM: Three associated secondary spectra.

3.2 Observational Results

B1737 was chosen for analysis in part because it exhibited arclets (both well-defined and
patchy), which have been shown to move systematically and reliably along the parabolic arc
of the secondary spectrum as the pulsar moves across the sky [4]. Since arclets constitute
much (if not all) of the high-delay power, we may be able to predict the delay centroid of
power. Unfortunately, the arclets were not seen to translate at the observation intervals
because the refractive timescale (which is the relevant scale for arclet translation) was too
long for a single observation and too short for the interstitial period. The observed refractive
scale was between 2 and 3 days on average.

Before we make a series of observations where arclet translation is resolved, we need
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to know if arclet power will contribute enough for the centroid, ΓR, to track the arclet
motion. This question is also related to the method used to determine ΓR. We claim that
the calculation of τscatt through ∆νd is a poor estimator of the characteristic delay because
it is not as sensitive to power at high delay. While the centroid analysis uses the moment of
each source of power,

∫
tRh(t) dt, the τscatt analysis uses the total power,

∫
Rh(t) dt. Arclets

are high-delay, low power features, thus
∫

(big) · (small) �
∫

small.

The effect of high delay arclets can be seen in a plot of Cumulative Delay. Figure 3.6
on the left displays the features that cause method-dependent delays. Figure 3.7 shows that
τscatt underestimates ΓR in a systematic fashion: when arclets are prominent at high-delay,
τscatt < ΓR; when they are not, τscatt ≈ ΓR. The latter, where arclets contribute insignificant
power at high-delay, is shown on the right in Figure 3.6.

Apart from the systematic offset, ΓR tracks τscatt well (Fig. 3.7), thus the ΓR values are
certainly not anomalous. The tracking of ΓR between the center frequencies seen in Figure
3.5 attests to the robustness of the centroid timing analysis. Also, the delay exhibits the
proper frequency scaling for delay due to multi-path propagation in a Kolmogorov turbulent
ISM, τ ∝ ν−4.4, in a qualitative fashion (Fig. 3.5).
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Figure 3.5 – The delays plotted are the average ΓR of the partitions for all center frequencies for
the duration of the observation.

The last point to address is the magnitude and variability of the delay, which have
the most significant implications for pulsar timing. The magnitude of the delay is many
hundreds of nanoseconds, which would be inconsequential if the variability was small. How-
ever, it is far from small – the delay is almost fully modulated. If the highest precision
pulsar timing has an error budget of 100 ns [11], then we have already breached an era in



20 CHAPTER 3. TIMING ANALYSIS OF B1737

which scattering delay cannot be ignored. And apart from some bouncing up and down,
the delay varies continuously on a monthly timescale, exhibiting almost periodic behavior
(with a period spanning the observation, see Figure 3.5).
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Figure 3.6 – These particular observations of B1737 (1175 MHz, Day 99 and Day 232) show
how strong, high-delay arclets can affect ΓR, the centroid of the ACF of the Impulse Response.
Our analysis emphasizes the importance of such effects in pulsar timing. LEFT: Notice that the
arclet between 5-11 µs increases the delay even though its power is several orders of magnitude
lower than the initial spike, but that τscatt ignores it thoroughly (and thus misses almost half the
delay). RIGHT: When arclets lack significant power at high-delay, τscatt is a good estimate of
ΓR.
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τscatt consistently underestimated ΓR at the center frequency of 1425 MHz, and the result is
qualitatively similar at 1175, 1380, and 1470 MHz. The only observation where τscatt clearly
surpasses ΓR (around Day 70) has a large uncertainty in the delay (see Fig. 3.8).

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

Relative Day

D
el

ay
 (

µs
)

Delay for B1737+13 at 1425 MHz (WAPP3)

Γ
R

Mean Γ
R

 of Partitions

Range of Γ
R

Figure 3.8 – The range of ΓR is determined by the maximum and minimum values of ΓR from
the partitioned observation and is our estimate for the uncertainty in ΓR.



23 3.3. MOTIVATING ΓRH
AS A TIMING RESIDUAL CORRECTION

3.3 Motivating ΓRh
as a Timing Residual Correction

We have already shown that the autocorrelation function of the impulse response is the
power spectrum of the intensity of the electric field spectrum, Rh(t) = PI(t). But why is
the centroid of this quantity a good measure of the timing residual? Let us assume for the
moment that all time delays are a result of interstellar propagation.

The popular calculation of the timing residual uses the time lag when the correlation
function between an observed pulse profile and a standard profile is a maximum. The Taylor
Timing Algorithm [10] (TTA) is a routine used to achieve fractional time-sample accuracy.
We make the following hypotheses to motivate the equivalence of the TTA timing residual,
∆t(p, i), and the centroid of the autocorrelation function of the impulse response, ΓR:

1) The time lag of maximum correlation between the observed pulse profile and the
standard profile is the centroid of the impulse response. Thus, the timing residual is
independent of the intrinsic pulse profile.

2) The autocorrelation function of a decaying exponential with a decay constant τ is also
a decaying exponential with the same decay constant.

3) If the impulse response can be approximated by a decaying exponential shifted t0 time
samples from the origin, then first-order dedispersion will remove the time shift. The
centroid of this corrected impulse response is now dominated by its decay constant.

The first point equates the timing residual and the centroid of the impulse response.
The second and third points equate the centroid of the impulse response and the centroid
of its autocorrelation function. Together, these three assertions predict that the centroid of
the autocorrelation function of the impulse response is the timing residual after first-order
dedispersion.

We now introduce the t0τ Model, whose exposition will guide us along the path to
prove these assertions. We use two tools to extract meaningful and realistic conclusions
from the t0τ Model approximation. The first conclusion is from a statistical treatment in
§4.3 and the second is from a simulation of wave propagation through random dispersive
media in Chapter 5.
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Chapter 4

The t0τ Model of the Impulse

Response

The interstellar medium (ISM) is a source of error in the high-precision timing of pulsars.
If we were to simplify and summarize the ISM’s effect on pulsar signals, it would be this:
the ISM smears the signal in time (dispersion and scattering slow the signal) and over space
(the image of the pulsar on the sky appears blurred).

The smearing can only delay components of the pulsar signal because the group velocity
(the speed at which a wave packet propagates) of radio waves in the ISM is less than the
speed of light. This is true because the ISM is a plasma and the group velocity in a plasma
is nc, where n < 1 (see Appendix A). From a signal processing perspective, we say that the
ISM filters the signal. Furthermore, we know that the response of a filter to a delta function
input is the impulse response, h(t), and that the response of a filter to an arbitrary signal
is that signal convolved with the impulse response [52].

What simplified filter should we attribute to the ISM? Geometrically, if rays are re-
fracted an angle θr toward the observer by a thin screen with Gaussian phase, then the
image on the sky has a Gaussian distributiona – fewer rays are refracted as the angle of
refraction increases [53]. An image on the sky with a Gaussian distribution corresponds to an
impulse response in the form of a decaying exponential (see Fig. 4.1) with a decay constant,
τ , and time shift, t0,

h(t) = H(t− t0)e−(t−t0)/τ (4.1)

This simple expression for h(t) is our t0τ Model of the impulse response of the ISM. In
reality, h(t) will be a more complex function of position and a more slowly varying time T ,
but there is good theoretical and observational motivation for this simplification [54].

aIn this context, Gaussian phase means that the electron column density is distributed in such a way that

its 2D spatial ACF is functionally a Gaussian. The Gaussian image on the sky (also known as the Scattered

Brightness) follows from the fact that its Fourier Transform is the ACF of the electric field phase, and that

a Gaussian transforms into another Gaussian (see §4.1).

25
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τt0

Figure 4.1 – The decaying exponential impulse response parameterized by a width τ and offset
t0. The origin, t = 0, is located at the left endpoint.

We can learn much about the error that the ISM induces in pulsar timing by using this
t0τ Model. Take any intrinsic pulsar signal, i(t), and filter it with the t0τ ISM. As before,
the response – which is the observed pulse p(t) – is the convolution of the intrinsic signal
with the impulse response, h(t),

p(t) = i(t) ∗ h(t), (4.2)

where ∗ denotes convolutionb. But now we have an analytic definition of the impulse
response.

The observed pulse profile is the timed quantity. By comparing it with the intrinsic
profilec, a quantitative measurement of the deviation from the unperturbed propagation
can be made. We call this deviation the time of arrival residual. Many processes con-
tribute to these residuals, but in our t0τ Model, only the ISM contributes, and it does so
deterministically.

Our goal, then, is to somehow undo the effect of the ISM filter, h(t). There are two
ways to determine a corrected timing residual (bearing in mind that in our t0τ Model, the
corrected residual should be zero, since we are attempting to undo the only effect on the
pulsar signal):

bThe convolution symbolism p(t) = i(t) ∗ h(t) is operationally defined as

p(t) =

∫ ∞
−∞

i(s)h(t− s) ds. (4.3)

We will see in §4.1 that convolution in one domain is multiplication in the transform domain. This is a

very useful result for numerics because FTs and multiplication can be computed much faster than a direct

convolution.
cIn practice, the observed profile is compared with a Standard profile, s(t), which is an idealization

or averaged realization of the pulse profile. Here we assume that s(t) approximates i(t) well enough to

interchange them.
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1) ∆t(h−1 ∗ p, i) = ∆t(i, i)

2) ∆t(p, i)− f(h)

where ∆t(·, ·) is a specific function that finds the timing residual of its first argument with
respect to the second, and f(h) is some function of the impulse response that characterizes
the delay induced by the ISM. The motivation for these correction schemes is as follows:

1) If the impulse response can be explicitly determined, then its inverse can be used to
deconvolve the observed profile,

h−1(t) ∗ p(t) = i(t). (4.4)

The intrinsic pulse by definition contains no information about the ISM, so its timing
residual is bereft of all interstellar effects. If interstellar effects dominate the timing
residual (as they do in our t0τ Model), then all errors have been corrected, and the
timing residual is zero.

2) The uncorrected timing residual, ∆t(p, i), has been increased in some way by the
ISM compared to ∆t(i, i), (in our t0τ Model, this effect is described analytically
by the functional form of the impulse response). The impulse response contains all
the relevant information about the ISM, i.e. it describes how the timing residuals
differ between the observed and intrinsic pulse profiles. If we determine how much
a component of the pulse is delayed due to a convolution with h(t), then we can
subtract the characteristic delay from the timing residual of the observed pulse. For
our t0τ Model, the characteristic delay is simply the centroid of the impulse response,
f(h) = Γh.

The second scheme, though more crude than the first, requires significantly less infor-
mation. While the first requires knowledge of h(t) in entirety to perform the deconvolution,
the second scheme requires only its centroid. This is not a problem for our t0τ Model be-
cause the impulse response is analytic, but real impulse responses are not that simple. To
only need their average effect is a significant advantage. The following sections describe how
we get away with using “average effect” quantities, like the impulse response’s centroid, in
real data analysis.

4.1 Simulating the t0τ Model

Simplifications can be made to the timing procedure if the impulse response approximates
(or in the case of the t0τ Model, is) a decaying exponential with decay constant, τ , and
time shift, t0.
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Simplification #1. Though the observed pulse is the intrinsic pulse convolved with the
impulse response, its timing residual is independent of the intrinsic pulse for all relevant
regimes. It only changes when the impulse response changes:

p = i ∗ h, but ∆t(p, i) = g(h), (4.5)

where g(h) is some unknown function of the impulse response.

Simplification #2. If the width of the impulse response, τ , is much smaller than the
width of the intrinsic pulse, w, then the only effect of the convolution between the two will
be to shift the observed pulse in time (with respect to the intrinsic pulse) by the centroid of
the impulse response. Symbolically, if τ � w, then

i ∗ h = i(t− Γh) (4.6)

We present an analytic example to provide intuition for this result (§4.1.1), then we provide
supplemental evidence with a numerical simulation (§4.1.2), and finally we consider the case
when t0 = 0 (§4.1.3).

4.1.1 An analytic example

The Fourier Transform of a broad function is narrow, and vice versa, so it is not surprising
that the Fourier Transform of a Gaussian G with width σ is another Gaussian G′ whose
width is the reciprocal of the width of the original Gaussian, σ′ = 1/σ.

Let f(t) and g(t) be normalized Gaussians with widths σf and σg respectively. Nor-
malized Gaussians have the functional form f(t) and Fourier Transform F (ν),

f(t) =
1√

2πσf
exp

[
−1

2
t2σ−2

f

]
� exp

[
−1

2
ν2σ2

f

]
= F (ν). (4.7)

Then by the Convolution Theorem [52], the convolution of f(t) and g(t) is

f(t) ∗ g(t) � F (ν)G(ν) (4.8)

= exp
[
−1

2
ν2σ2

f

]
exp

[
−1

2
ν2σ2

g

]
(4.9)

= exp
[
−1

2
ν2(σ2

f + σ2
g)
]

(4.10)

= exp
[
−1

2
ν2σ2

c

]
(4.11)

F (ν)G(ν) �
1√

2πσc
exp

[
−1

2
t2σ−2

c

]
(4.12)

That is, the convolution is another Gaussian with width

σ2
c = σ2

f + σ2
g (4.13)

σc = σf

√
1 +

(
σg

σf

)2

. (4.14)
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Let us now assume that one of the widths is significantly smaller than the other,
σg � σf . Then using the binomial expansion,

σc ≈ σf

[
1 +

1
2

(
σg

σf

)2
]

. (4.15)

For specificity, assume σf = 1 and σg = 1/1000. Thus, the width of the convolution is

σc ≈

[
1 +

1
2

(
1

1000

)2
]

= 1 +
(
5× 10−7

)
. (4.16)

Even though g(t) was one-thousandth the width of f(t), the width of the convolution is
only greater than that of f(t) by less than one-millionth.

For this example it is sensible to regard f(t) as a signal and g(t) as a filter. While both
functions can play either role, the wider function, f , is being acted upon – it is broadened by
the filter. In our application to pulsar timing, an intrinsic pulse can be orders of magnitude
wider than the impulse response, its filter. The narrowest observed pulse is about 40 µs at
FWHM [55], whereas we are trying to show that impulse responses may have widths on the
order of 1 µs at GHz frequencies (see §3.2). Thus we will remain in regimes where

τ

w
.

1
10

(4.17)

To summarize, the broadening due to convolution is proportional to the square of the
ratio of widths of the convolution inputs,

(σc − σf ) ∝ (σg/σf )2. (4.18)

This is no trickery of Gaussian functions in particular. Any two functions whose widths are
disparate enough will convolve similarly.

4.1.2 A numerical simulation

A noiseless intrinsic pulse profile and impulse response were generated. While I will reference
a Gaussian intrinsic pulse and a decaying exponential impulse response, the simulation was
run with the following variants to the same effect:

Intrinsic Pulse

1) Gaussian, e−t2/w2

2) Superposition of multiple Gaussians,
∑

n Ane−t2/w2
n

Impulse Response

1) Decaying exponential, H(t− t0)e−(t−t0)/τ
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2) One-sided Gaussian, H(t− t0)e−(t−t0)2/τ2

3) Kolmogorov response, H(t− t0)
∫∞
0 se−s5/3

J0(s
√

t− t0) ds

where J0(·) is the Bessel functiond. The intrinsic pulse width was fixed at w = 50 time
samples and the width ratio τ/w was incremented in a series of simulations from a ratio of
100 to 10−3.

The intrinsic pulse was convolved with the impulse response, creating the observed
pulse (see Fig. 4.2). The TTA was then used on the observed pulse to determine the time
of arrival, ∆t(p, i), compared to that of the intrinsic pulse, ∆t(i, i).

τ/w = 1

τ/w = 0.1

τ/w = 0.01

Time

i(t)

h(t)

P(t)

Figure 4.2 – The intrinsic pulse (blue), t0τ impulse response (black), and observed pulse (red)
are shown for three different widths of the impulse response. On the top, the width is large
relative to the width of the intrinsic pulse, so the observed pulse has a broadened tail. On the
bottom, the width is small relative to the width of the intrinsic pulse, so the observed pulse is
approximately a shifted copy of the intrinsic pulse. Note that h(t) has a non-zero value of t0 (5%
of the interval) because t = 0 at the left endpoint.

The TTA uses spectral analysise of its arguments (here the observed and intrinsic
pulses) to determine the change in time of arrival to within a fraction of a time sample. It
is the predominant timing algorithm in pulsar timing routines.

We extract two major conclusions from this noiseless simulation where the intrinsic
pulse profile is stable and the only source of timing error is interstellar propagation:

1) The timing residual is given by the centroid of the impulse response, Γh. The particular
shape of the intrinsic pulse is inconsequential because ∆t(p, i) = Γh when τ/w .

1/10, which is the upper bound of the observational regime. The simulation results

dThe third impulse response is thought to be a better approximation for the ISM than our t0τ Model [2]

(the first impulse response).
eNote that this analysis, though performed in the transform domain, is not related to our timing analysis.
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comparing ∆t(p, i) and Γh for a range of width ratios are shown in Figure 4.3. This
justifies Simplification #1.

2) When the intrinsic pulse is much wider than the impulse response, the observed pulse
is essentially the intrinsic pulse shifted by the centroid of the impulse response. The
timing residual is constituted by a shift and a broadening regardless of the width
ratio. The fact that the observed pulse for τ/w = 1 in Figure 4.2 is visibly smeared
implies that it must be shifted less than Γh. At the other extreme, the fact that
the observed pulse for τ/w = 0.01 is imperceptibly smeared implies that it must be
shifted almost entirely by Γh. Quantitatively, both statements are true. This justifies
Simplification #2.

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.8

−0.6

−0.4

−0.2

0

∆t(p,i)

Logarithmic (dB)

0 10 20 30 40 50
0

10

20

30

40

50

∆t(p,i)

Γ h

Linear

Figure 4.3 – A set of timing residuals and centroids are plotted for various width ratios (from
10−3 to 100), where the intrinsic pulse width is w = 50 time samples. We can set t0 to zero for
convenience without loss of generality, and then τ = Γh. The data is not shown below a width
ratio of 10−1 because there it simply coincides with the diagonal.

These conclusions can be summarized in a set of short symbolic equations.

∆t(p, i) = ∆t(i ∗ h, i) (4.19)

= ∆t(i, i) + Γh (4.20)

= ∆t(i, i) + (shift + broadening) (4.21)

Notice that we have also validated the “crude” scheme (given as No. 1 on page 27) to undo
the effect of the ISM, since

∆t(p, i)− Γh = [∆t(i, i) + Γh]− Γh = ∆t(i, i). (4.22)

When the width of the impulse response, τ , is much less than the width of the intrinsic
pulse, w, we have

shift ≈ t0 + τ (4.23)

broadening ≈
( τ

w

)2
w (4.24)
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where the latter comes from Eq. 4.15. Thus for τ � w, the broadening will be negligible
and the shift will be the centroid. Notice that we are forcing τ to be small, so the centroid
(and thus the shift in the observed pulse) could be dominated by the offset t0 (the shift in
the impulse response). This would happen identically if the impulse response were a delta
function.

4.1.3 The t0 = 0 case

Motivated by observations, consider the case in which t0 is zero (i.e. there is no offset in
the impulse response). The centroid of the impulse response is dominated by its width, τ ,
but let τ still be small compared to the width of the pulsef.

A Discussion. We simulated more realistic conditions by limiting the time resolution
and including a finite signal-to-noise ratio (SNR). We used Gaussian noise with standard
deviation σnoise and defined our SNR as

SNR ≡ pmax

σnoise

, (4.25)

where pmax is the maximum power of the observed pulse.

By fully sampling the (τ , SNR) state space (see Fig. 4.4), we determined that the
fractional uncertainty in the pulse power determines the fractional uncertainty in the pulse
timing,

σnoise

pmax

≈ δ(∆t)
w

. (4.26)

Substituting in SNR and solving for δ(∆t), the uncertainty in the timing residual is

δ(∆t) ≈ w

SNR
(4.27)

Thus a correction is only useful when the induced delay is larger than the uncertainty in the
timing residual, τ > δ(∆t), otherwise the correction is buried in the noise. To ensure that
τ > δ(Dt), the width ratio τ/w or the SNR must be large. This implies that the spectral
timing analysis is crucial – it provides delay information, ΓR, that is difficult to determine
in the time domain in the presence of noise. There is a caveat, though. Regardless of our
sensitivity to an interstellar delay, a correction is trivialized when it is smaller than the
noise.

A Comment. The pulsar timing community has a tendency to ignore non-dispersive
interstellar propagation effects until the observed pulse is visibly broadened by h(t), as in
the top panel of Figure 4.2. However, we have shown (analytically and by simulation) that
the effect of h(t) when its width is much smaller than the pulse width, τ � w, is to shift

fThe observationally relevant constraint τ � t0 is justified in section §5.2, where dedispersion is discussed.

Furthermore, t0 need only be constant for this discussion to be relevant because only variation in timing

behavior matters. If t0 is constant, we simply redefine where t = 0 so that the constant is zero.
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Figure 4.4 – A representative width ratio of τ/w = 0.1 is shown. LEFT: As the SNR increases,
the uncertainty in ∆t(p, i) decreases, and the mean value settles down to the value shown in
Figure 4.3, where SNR (defined in Eq. 4.25) is infinite. RIGHT: The uncertainty behaves as
described in Eq. 4.27.

the intrinsic pulse by the centroid of h(t),

i(t) ∗ h(t) = i(t− Γh). (4.28)

There is no smearing, no “scattering tail” to seeg. Thus, there is no method in the time
domain to determine what h(t) has actually done because there is only a shift. Yes, the shift
will register in the timing residual from the TTA, but there’s no telling what the source of
the shift was, whether it was interstellar scattering or gravitational wave perturbations.

Though a shift in the intrinsic pulse by Γh is imperceptible in the time domain, it has a
non-negligible effect on the timing residuals that can be precisely determined in the spectral
domain. Furthermore, the spectral domain analysis provides independent information of the
scattering delay. For instance:

1) Let us assume that the only timing error resulted from scattering. Then the TTA
would find a timing residual ∆t = x and we would find a scattering delay ∆ts = x

with the spectral domain technique. Thus we can claim that the only timing effect is
scattering.

2) Now let us assume that both scattering and gravitational waves are sources of timing
error. The TTA will find a timing residual ∆t = x, but we would find a scattering
delay ∆ts = y. We can thus confirm the existence of gravitational waves and declare
that they have an amplitude such that they induce a timing error ∆tGW = ∆t−∆ts.

gWhen there is a scattering tail to see, the broadening is measured in the time domain by fitting decaying

exponentials to the scattering tail. This complicated procedure must account for the pulsar-specific intrinsic

pulse embedded within the observed pulse. The spectral analysis that we employ is a much more direct (and

unambiguous) measurement.



34 CHAPTER 4. THE t0τ MODEL

While our technique does not allow us to (directly) determine a t0 component of the cen-
troid of the impulse response (which is why we stipulated that t0 was negligible for the
discussion and comment), such a component is the first order term from dispersion. If we
can successfully dedisperse the signal, then the centroid will be dominated by τ , and the
spectral timing analysis will determine the centroid of the dedispersed impulse response.

There is another important step to take before we can claim that the centroid of the
impulse response is the quantity that we are probing with our spectral domain analysis. We
take that step now.

4.2 The Autocorrelation Function of the Impulse Response

We have so far motivated the centroid of the impulse response Γh(t) as a correction factor
for interstellar effects in pulsar timing, but this quantity is not an observableh. To bridge
the final gap between the ideal and the real, we invoke the autocorrelation function (ACF)
of the impulse response, Rh(t), which is an observable. In this section, we motivate the use
of its centroid, ΓRh

, as the interstellar scatter correction factor.

The t0τ Model approximated the impulse response as a decaying exponential charac-
terized by a width τ and offset t0. Its centroid is their sum,

Γh = t0 + τ. (4.29)

The ACF of the impulse response is characterized only by its width, τ (which is the same
width as the impulse response) because any time shift information is lost in the process of
autocorrelation:

Rh(t) =
∫ ∞

t0

h(s)h(s + t) ds (4.30)

=
∫ ∞

t0

e−(s−t0)/τe−(s+t−t0)/τ ds (4.31)

= e−t/τ
(τ

2

)
(4.32)

Thus, we see that the centroid of Rh(t) approximates the centroid of h(t) when τ � t0.

Sadly, there is no observational evidence that τ � t0. Furthermore, as a real impulse
response diverges from the t0τ Model, so too does the equivalence between the width of
h(t) and its ACF. However, removing a time offset from each impulse response can be
accomplished with first-order dedispersion (which removes a linear phase ramp, i.e., by the
Fourier Shift Theorem [52], a constant time offset). After first-order dedispersion, the t0τ

impulse response is identical to its ACF.

hThis is a result of instruments measuring signal intensity without phase information, which is buried in

noise.
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4.3 A Statistical Correction

In pulsar timing, the variance of a set of timing residuals determines its quality. With all
timing effects accounted for, the variance of residuals would be zero. Given the following:

1) The t0τ Model, Γh = t0 + τ ,

2) A set of timing residuals, ∆tj , and

3) A set of h(t) widths, τj , calculated from the centroid of Rh(t),

we can make a correction to the timing residuals with the observationally accessible delay,
τ . One might assume that a good corrected timing residual would be

∆t′j = ∆tj − τj . (4.33)

Unfortunately, this is not always helpful. For instance, if t0 = −τ , then

∆t′j = ∆tj − τj (4.34)

= (t0,j + τj)− τj (4.35)

= −τj (4.36)

whereas the uncorrected timing residual is ∆tj = 0 because ∆t = Γh in the t0τ Model! How
unfortunate.

To intelligently correct, we must know statistically how t0 compares to τ . In particular,
if we know τ exactly, then the quality of a statistical correction to Γh depends on how
precisely we know the relative variation of t0, R = σt0/στ , and the correlation coefficient
between t0 and τ , ρ(t0, τ).

Though τ is an observable, t0 is not. How then can we get any estimate of the variance
of t0 and its correlation coefficient with τ? The answer lies in simulation. With access to
the impulse response (and thus the set of t0,j and τj), we can determine if there is any
consistent variance or correlation that can be applied when we do not have access to the
set of t0,j . The following analysis will show how well we can improve the timing residuals,
and how precisely we need to know the statistical quantities to do so.

Conscious of our misguided attempt in Eq. 4.33, we can best correct the timing
residuals not by strictly subtracting τ , but by subtracting a multiple, ατ . The coefficient
α must be derived from the available statistical information. Let F be the ratio of the
corrected to uncorrected timing residuals,

F =
V ar(Γh − ατ)

V ar(Γh)
, (4.37)

where α ∈ R. Minimizing F minimizes the timing residuals (since Γh = ∆t). The residuals
have improved if F < 1, and we have perfectly corrected if F = 0 (because F is positive
definite, a ratio of squared quantities).
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If we continue to write F out more explicitly and invoke the t0τ Model, then

F =
V ar [(t0 + τ)− ατ ]

V ar[t0 + τ ]
(4.38)

=
V ar(t0) + (1− α)2V ar(τ) + 2(1− α)Cov(t0, τ)

V ar(t0) + V ar(τ) + 2Cov(t0, τ)
(4.39)

Adopting the sigma notation for variance and covariance, e.g. V ar(X) = σ2
X ,

F =
σ2

t0 + (1− α)2σ2
τ + 2(1− α)σt0,τ

σ2
t0

+ σ2
τ + 2σt0,τ

(4.40)

= 1 +
α2σ2

τ − 2α(σ2
τ + σt0,τ )

σ2
t0

+ σ2
τ + 2σt0,τ

(4.41)

(4.42)

We introduce again the relative standard deviation of t0, R, and the correlation coefficient,
ρ, between t0 and τ .

R =
σt0

στ
(4.43)

ρ =
σt0,τ

σt0στ
(4.44)

Note that −1 ≤ ρ ≤ 1. Then F can finally be reduced to

F = 1 +
α2 − 2α(1 + Rρ)
1 + R2 + 2Rρ

(4.45)

Our näıve attempt to subtract τ from ∆t (in Eq. 4.33) is the special case when α = 1.
What statistical regimes would benefit from such a blind correction? Well, when α = 1,

Fα=1 =
R2

1 + R2 + 2Rρ
. (4.46)

We make an improvement if F < 1.

1 >
R2

1 + R2 + 2Rρ
(4.47)

ρ > − 1
2R

(4.48)

We postulated the t0 = −τ scenario, in which R = 1 and ρ = −1. Thus, −1 > −1
2

is false, and we confirm that we decrease the timing residual quality with our correction:
V ar(∆t′) > V ar(∆t).

In general, i.e. for any α ∈ R, we can define the region in which an improvement is
made, and we can identify the value of α that minimizes the timing residuals for a particular
set of statistics. So, for any α, we have made an improvement if F < 1.

1 > 1 +
α2 − 2α(1 + Rρ)
1 + R2 + 2Rρ

(4.49)

ρ >
α− 2
2R

(4.50)
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so long as α 6= 0 and 1 + R2 + 2Rρ 6= 0. We have made the best improvement when F is a
minimum.

∂F

∂α
= 0 (4.51)

0 =
2α− 2

1 + R2 + 2Rρ
(4.52)

α = 1 + Rρ (4.53)

Using this critical value of α (Eq. 4.53), we can achieve a minimum value for F of

Fmin =
(1− ρ2)R2

1 + R2 + 2Rρ
. (4.54)

In addition to suggesting a set of ατj to subtract from Γh,j , this result provides im-
mediate intuition into how well we can do if we only rely on the statistics of t0. Because of
the (1− ρ2) term, the correction is perfect, F = 0, when |ρ| = 1 for any Ri. When R � 1,
the improvement is best as |ρ| increases. But there is always improvement, except on the
infinitesimal subspace of the (R, ρ) parameter space when ρ = −1/R. On this curve, there
is no improvement (F = 1). The details can be seen in Figure 4.5.
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Figure 4.5 – Fmin, the best improvement that can be made to timing residuals if the statistics of
t0 (ρ and R) are known precisely. The lower the value of F , the better the improvement.

It now rests upon the simulation to determine if there are any statistical relationships
between t0 and τ so that this result can be used. However, the simulation may not reveal

iHowever, F = 1 6= 0 when ρ = −1 and R = 1 by l’Hôpital’s Rule. This is a degenerate case of the

solution. Fortunately the coefficient of τ subtraction for this case, α = 1 + Rρ = 0 still perfectly corrects

the timing residuals. This was the result of the initial example starting with Eq. 4.34.
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an exact relationship. We would prefer something definite, like R = 7.3 and ρ = 0.88,
which dictates an α = 7.424. More likely is R = 7± 1 and ρ = 0.9± 0.1, which suggests an
α = 7± 2. How sensitive is the improvement to the uncertainty in α?

In general, this is a difficult question to answer and visualize. Let us assume that one
of the statistical parameters is well known, say ρ. Then we extract a constant ρ slice of
F . There exists a true R = R0 and a corresponding best α0 = 1 + R0ρ. The sensitivity
of F to α is the amount that α can vary about α0 while F < 1 is still true. In some of
the parameter space, there is much flexibility in the value of α. In others, it is critical to
determine α precisely. Two examples are provided in Figure 4.6, and the pair on the right
mimics the above example where R ≈ 7 and ρ ≈ 0.9.
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Figure 4.6 – Sensitivity of F to uncertainty in statistical parameters. Regions in red show param-
eter combinations that result in degraded timing residuals after correction using the associated
α. In the top right figure, let’s assume that the true R0 = 7. Then α can be between 5 and 9
and still result in an F < 0.4.



Chapter 5

Dispersion and the Simulation

The Coles Simulation [50] is a wave-propagation simulation that we use to investigate quan-
tities that are not observable with a telescope. In particular, we want to know how the
true time delay Γh correlates with observables, such as ΓR. The advantage of the Coles
Simulation over ray-tracing simulations [49] is that it permits both refractive and diffractive
effects.

During a single call to the program, Nν plane wave simulations are run independently.
Each plane wave is incident upon a two-dimensional screen and exits with corrugations
in phase dictated by the screen. After propagating to an observer plane, this corrugated
wave is one of the Nν outputs of the simulation, which are concatenated to simulate the
propagation of a wave packet.

If the screen is uniform, then the phase of the exiting plane wave is not corrugated.
There is no spatial variation in the phase advancement, only the frequency variation due to
dispersion – a higher frequency plane wave is advanced in phase less than a lower frequency
plane wavea.

All phase changes are related to a physical quantity, the column density electrons, also
known as Dispersion Measure (DM),

DM =
∫

ne d`. (5.1)

As derived in Appendix A, a plane wave is advanced in phase (in mks units) by

∆φ =
e2∆DM
4πε0mec

1
ν

. (5.2)

If the waves are given by their wavelength,

∆φ =
e2∆DM

4πε0mec2
λ. (5.3)

aIn any scenario, the wave is only dispersed immediately upon exiting the screen. Higher-order effects

due to non-uniform spatial structure in the screen, such as scattering, arise from the propagation of the

wave to the observer plane.

39
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Thus, dispersion causes phase to advance linearly with wavelength (a phase ramp).

To correct for dispersion – to dedisperse – the phase ramp must be subtracted from
the electric field phaseb

E′ = Ee−i∆φ(λ). (5.4)

If the bandwidth is narrow enough, then

ν−1 ≈ c1ν + c2, (5.5)

and the phase advancement is linear in frequency as well. In this case, the dedispersed
electric field is

E′ ≈ E · exp [2πi(c1ν + c2)] (5.6)

How does this relate to pulsar timing and the time domain? The Fourier Shift Theorem
states that a linear phase ramp in frequency is a constant time shift.

exp [2πi(c1ν + c2)] � h(t + c1). (5.7)

Thus we have discovered that the first-order effect of dispersion is to induce a time shift
c1 in the Impulse Response. We can immediately conclude that the ACF of the Impulse
Response completely ignores first-order dispersion. The ACF centroid, ΓR, is affected only
by scattering and higher-order dispersive effects.

Revisiting the t0τ Model, this time shift c1 is t0. After first-order dedispersion, the
centroid of the impulse response changes from Eq. 5.8 to Eq. 5.9:

h(t) = H(t− t0)e−(t−t0)/τ (5.8)

h(t + t0) = H(t)e−t/τ (5.9)

And the centroid of the dedispersed Impulse Response is the centroid of its ACF,

Γ′ = Γ− t0 = τ (5.10)

5.1 Ideal Dedispersion

A series of plane waves that are evenly spaced in wavelength can be dedispersed immediately
upon exiting the screen by first determining how much phase advancement occurred for a
particular wavelength and then scaling it linearly for all other wavelengths. This would
provide a phase ∆φj to subtract from the jth wave. This simplicity arises because dispersion
is deterministic.

bIn this chapter we define a primed symbol as the dedispersed counterpart of the unprimed symbol (i.e.

E = dispersed vs. E′ = dedispersed).
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Consider an attempt to align the phase of all the spectral channels with the center
channel, call it λc. Since ∆φ ∝ λ, we can write

∆φj

λj
=

∆φc

λc
, (5.11)

where λj and ∆φj are the wavelength and phase of the jth spectral channel, where j goes
from 1 to Nν . Then

∆φj −∆φc =
(

λj

λc
− 1
)

∆φc (5.12)

=
(

[λ1 + (j − 1)∆λ]
λc

− 1
)

∆φc (5.13)

where ∆λ is the constant separation in wavelength between consecutive spectral channelsc

such that Nν∆λ is the total bandwidth of the simulation and λ1 is the wavelength at the
beginning of our band, i.e. λ1 = λc − 1

2Nν∆λ. Finally, we define dλ as the fractional
bandwidth, i.e. dλ = Nν∆λ/λc. Then

∆φi −∆φc =

([
λc + (j − 1− 1

2Nν)∆λ
]

λc
− 1

)
∆φc (5.14)

=
(j − 1− 1

2Nν)∆λ

λc
∆φc (5.15)

=
(j − 1− 1

2Nν)dλ

Nν
∆φc (5.16)

=
[
(j − 1)

Nν
− 1

2

]
dλ∆φc (5.17)

This expression for the difference in phase between channels, ∆φj,c = ∆φj − ∆φc,
is precisely the relationship used in the simulation, where ∆φc is the given screen phase.
Notice that this equation is only a function of simulation parameters and that there is only
relative wavelength dependence.

We now have an expression for the phase we need to subtract, ∆φj,c , to dedisperse the
waves immediately upon exiting the screen. But how do we dedisperse after the waves have
propagated from the screen to the observer? Complicated interference occurs if the phase
is corrugated, so it is not necessarily simple. To a good approximation, anything outside
of the refractive scale does not contribute to the phase [16]. Thus, we can approximate the
phase of the center spectral channel, ∆φc, as the phase of the original screen averaged over
the refractive scale. So the phase to be subtracted at the observer is

∆φj,c =
[
(j − 1)

Nν
− 1

2

]
dλ∆φc, avg. (5.18)

cWhen the Nν plane waves in the simulation are all separated by a constant wavelength ∆λ, then for

a particular spatial pixel the phase advancement between consecutive plane waves, ∆φj,j±1, is constant.

However, if ∆DM varies spatially, so too does ∆φ.
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In summary, we scale the spatially smoothed phase of the center frequency by a wave-
length dependent function

∆φj,c = g(λ)∆φc, (5.19)

where g(λ) = g(j, dλ, Nν), and then subtract ∆φj,c from the phase of the jth electric field,
φj ,

φ′j = φj −∆φj,c (5.20)

λ
λ1 λfλc

φ

φ’
φ1

φf
φc

Figure 5.1 – The effect of dispersion is a linear phase ramp in wavelength. Perfect dedispersion
removes the wavelength dependence, as in the interval [λ1, λf ].

Notice that we only concern ourselves with relative phase, ∆φj,c. Figure 5.1 is a plot
of phase as a function of wavelength, where the dedispersed phase is constant across the
band at a value of φc, as Eq. 5.18 dictates. However, the height of the horizontal line can
be any arbitrary value of φ because a constant phase offset in no way affects the timing
information.

e−i[c1φ(λ)+c2] = e−ic1φ(λ)e−ic2 (5.21)

= c3e
−ic1φ(λ) (5.22)

The Fourier Transform of an arbitrary scaled function is

c3H(ν) � c3h(t). (5.23)

A constant phase offset changes the amplitude of the function’s transform and nothing
more.

5.2 Dedispersion Results

A set of five simulations were run to compare a series of impulse responses from dispersed
and dedispersed data. In all five runs, dedispersion drastically reduced wander between the
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Figure 5.2 – A row of individual impulse responses from Run 1, both dispersed (LEFT) and
dedispersed (RIGHT) in linear (TOP) and logarithmic (BOTTOM) displays. Pixel numbers
representing delay are displayed on the x-axis and the y-axis is a spatial cut through the observer
plane, i.e. h(t, y). The wander is visible in the dispersed impulse response, even in this modest
scattering where m2

B = 50.
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leading edge of the Impulse Responses (see Fig. 5.2), and thus reduced the variance in Γh.
The simulation parameters and resulting centroid standard deviations are listed in Table
5.1.

Run m2
B sd sr τscatt σΓ σ′Γ

1 50 1.0 110 1.2 1.22 0.224
2 100 0.68 170 2.7 1.66 0.334
3 250 0.39 300 8.2 2.51 0.555
4 500 0.26 460 19 3.38 0.710
5 1000 0.17 690 43 4.68 0.767

Table 5.1 – The values of sd, sr, τscatt, σΓ, and σ′Γ are given in pixels/samples. For all runs
N = 4096, Nν = 512, sF = 1, dλ = 0.05, and dx = 0.08. N2 is the total number of spatial pixels
and dx is the spatial step size relative to sF .

First-order dedispersion of the simulation shows that the variance of Γh can be sig-
nificantly reduced, but that there is residual variation due to scattering and higher-order
dispersion delays (Table 5.1, which we expect because the impulse response width varies.
Motivated by the t0τ Model, we can decompose Γh into an Effective Dispersive Delay, t̂0,
and an Effective Scattering Delay, τ̂ . We show how these quantities are correlated (which
is useful for the Statistical Correction in section 4.3) and further suggest what may account
for variation in Γh beyond t̂0 and τ̂ .

The t0τ Model is not perfectly applicable to the simulation because the individual
impulse responses exhibit finite sampling error and are not well-defined by a decaying expo-
nential. However, once the data are dedispersed, the leading edges of the impulse responses
tend to align (because first-order dedispersion removes a time shift) and the ensemble-
average impulse response, 〈h〉, becomes a smooth decaying exponential with a finite rise
time (see Fig. 5.3). Thus when we dedisperse and average the impulse response over the
refractive scale, it is reasonable to use the t0τ Model as an approximation.

The centroid of the ACF of the Impulse Response, ΓR, will clearly serve as τ . In
the t0τ Model, τ is unaffected by dedispersion, τ ′ = τ , and we can see in Figure 5.4 that
ΓR (displayed as τ̂) is identical in both the dispersed and dedispersed data, Γ′R = ΓR.
More accurately, ρ(Γ′R,ΓR) = 0.9993, therefore it is a very good approximation to say that
dedispersion does not change the shape of the Impulse Response.

A functional relationship between Γ′h and ΓR is predicted by the t0τ Model in Eq.
5.10. Since the centroid of the dedispersed Impulse Response, Γ′h is reasonably correlated
with the centroid of the ACF of the Impulse Response, ΓR, we define an effective scattering
delay

τ̂ ≡ ΓR, (5.24)

which displays all the properties of τ in the t0τ Model except that it is not perfectly
correlated with Γ′h (see Table 5.2).
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Even when dedispersed, the ensemble-average impulse response does not have a sharp
leading edge, which makes it difficult to define a quantity that will serve as t0 in the t0τ

Model. An unlikely quantity, the TTA timing point of the impulse response with respect
to the ensemble-average impulse responsed, ∆t(h, 〈h〉), was found to display the properties
of an offset t0 when used in conjunction with ΓR. Specifically, since Γh = t0 + τ in the t0τ

Model,
Γh = ∆t(h, 〈h〉) + ΓR, (5.25)

in both the dispersed and dedispersed data. This result can be seen by the strong correla-
tions in Table 5.2 and the associated figures (displayed as t̂0). Therefore, we would expect
that

∆t(h′, 〈h′〉) = 0 (5.26)

since first-order dedispersion removes time offsets. But we must be cautious because
∆t(h′, 〈h′〉) does not vanish (see Fig. 5.4). Let us define an effective dispersive delay

t̂0 ≡ ∆t(h, 〈h〉), (5.27)

which displays all the properties of t0 except that it is not fully removed by first-order
dedispersion, t̃′0 6= 0. This is analyzed more closely in Appendix B.

The centroid of the Impulse Response is the ISM delay; constructing t̂0 and τ̂ is a
way to break the centroid into its components (Dispersive and Scattering delays). We are
“peeling the onion” of the centroid to determine how it is constituted. If t̂0 and τ̂ were the
only components, then

Γh −
(
t̂0 + τ̂

)
= 0. (5.28)

However, we find that this subtraction does not yield zero – there is residual variation in
the centroid beyond these two terms. The spatial gradient of the smoothed phase screen
has some correlation with the residual variation (see Fig. 5.5), but it cannot be the whole
story. The next layer of the onion is unknown.

Correlation Dispersed Dedispersed Plot Location

ρ(τ̂ , t̂0) -0.194 0.612 Fig. 5.6 (Left)
ρ(Γh, τ̂) -0.128 0.872 Fig. 5.6 (Right)
ρ(Γh, t̂0) 0.998 0.917 Fig. 5.7 (Red)
ρ(Γh, t̂0 + τ̂) 0.999 0.998 Fig. 5.7 (Blue)

Table 5.2 – Various correlations between τ̂ , t̂0, and Γh for both dispersed and dedispersed simu-
lation data as shown in Figures 5.6 and 5.7.

dThis must not be confused with the TTA timing point of the observed pulse with respect to the intrinsic

pulse, ∆t(p, i) = Γh.
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Figure 5.3 – Dispersed (LEFT) and dedispersed (RIGHT) ensemble-average impulse responses.
Pixel numbers representing delay are displayed on the x-axis.
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Figure 5.4 – Γh, t̂0, and τ̂ are imaged as a function of spatial pixel (averaged over the refractive
scale) for both dispersed and dedispersed data.
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5.3 The Parkes PTA and Dispersion Measure Variations

Quantities that cannot be determined observationally are accessible in the simulation: the
electric field, the physical scattering screen, and anything derivable from those two. While
such omniscience allows us to wholly understand the simulation’s realization of interstellar
propagation, it is useful to feign ignorance to see what can be accomplished using only
information that is accessible to observers.

The Parkes Pulsar Timing Array (PPTA) group uses measurements at two wave-
lengths, 50 and 10 cm, to determine dispersion measure fluctuations (∆DM) as a function
of time [42]. They do this by fitting for λ2 dependence in the timing residuals for each timing
point,

∆t2 −∆t1 ∝
(

1
ν2
2

− 1
ν2
1

)
∆DM (5.29)

∆DM ∝
(

∆t2 −∆t1

ν−2
2 − ν−2

1

)
(5.30)

since ∆t ∝ ν−2∆DM. The complex impulse response provides all the information necessary
to determine the effects of interstellar propagation, but it is not an observable, so we discard
it to mimic the conditions of the PPTA observations.

The simulation is inherently achromatic – it is not run at a specific frequency. Instead,
all calculations are based on the Fresnel scale, sF . Since the Fresnel scale is proportional to
the square root of the observing wavelength, we can simulate observations at two different
wavelengths by using two different sF . Therefore, to mimic the PPTA observations at λ1 =
10 cm and λ2 = 50 cm, the Fresnel scales must be related to each other by sF,2 =

√
5sF,1.

All simulation parameters that have a wavelength dependence must be similarly scaled:

Quantity λ Scaling
sF λ1/2

dλ λ−1

m2
B λ17/6

sd λ−6/5

sr λ6/5

Table 5.3 – For this simulation, Kolmogorov turbulence is used, i.e. α = 5/3. The wavelength
scalings of m2

B , sd, and sr depend explicitly on α.

The m2
B scaling occurs because [20]

m2
B ∝

(
sF

sd

)5/3

. (5.31)

Thus, we have the relationships necessary to simulate multi-frequency observations.
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Figure 5.5 – The phase screen (LEFT), its gradient squared (MIDDLE), and the residual delay
after

(
t̂0 + τ̂

)
is subtracted from Γh (RIGHT) are imaged as a function of spatial pixel (averaged

over the refractive scale). Components of the centroid not accounted for by t̂0 or τ̂ may include
delay due to the refractive scattering angle (the phase gradient squared).

Figure 5.6 – Scatter plot of τ̂ against t̂0 (LEFT) and Γh (RIGHT), where the axes display time
sample number. The correlations significantly increase when the data is dedispersed.

Figure 5.7 – Scatter plot of Γh against t̂0 (RED) and t̂0 + τ̂ (BLUE), where the axes display time
sample number. For both dispersed and dedispersed data, the latter is nearly unity.
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We calculate the timing residuals the way an observer might, by using the Talyor Tim-
ing Algorithm (TTA) on the observed pulse profiles, p(t). Since observed pulse profiles are
not a simulation output, they are constructed by convolving an intrinsic pulse profile i(t)
with the impulse response. However, the timing residuals can be approximated indepen-
dently of the intrinsic pulse profile (thus making it independent of the pulsar). In §4.1 we
showed that if the width of the intrinsic pulse profile is much greater than the width of the
impulse response, then the timing residual (from the TTA) of their convolution is simply
the width of the impulse response, or if the impulse response is offset from the origin, its
centroid (which is just the sum of width and offset), ∆t(p, i) = Γh.

Because the simulation is noiseless, we are guaranteed that the timing residuals are
entirely a result of interstellar propagation effects. Also, because we are omniscient, we
can compare the observational method of ∆DM determination with the ∆DM used in the
simulation. Thus we can judge the accuracy of this method in the ideal condition when
interstellar propagation effects dominate the timing residuals. We could also comment on
the accuracy when interstellar propagation effects are buried in noisy residuals by adding
noise to the simulation.

To compare the true ∆DM with the observationally motivated derivation of ∆DM, we
need to specify how phase and delay relate to ∆DM. In the mks unit system, they are

∆DM = 4πε0e
−2mec

∆φ

λ
(5.32)

=
(
3.8× 10−8 ns · pc

cm3 · rad

)
νGHz∆φ (5.33)

∆DM = 8π2ε0e
−2mec

∆t

λ2
(5.34)

=
(

2.41× 102 ns2 · pc
cm3 · s

)
ν2

GHz∆t (5.35)

where ∆φ is in radians, ∆t is in seconds, and ∆DM is in pc/cm3. The simulation provides
∆φ in radians and ∆t in time samples, which can be converted to physical time units by
multiplying the sample number by twice the observational bandwidth, B, in Hz,

tphysical = 2B tsample. (5.36)

Once phase and delay are transformed, a simple subtraction of the resulting ∆DM shows
how well the two determinations compare.

The simulation was run with the parameters in Table 5.4. The determinations are
nearly identical when the scattering strength (m2

B) is small – the pulsar beam is weakly
scattered, illuminating a small region of the scattering screen. But, so far, they are in-
comparable when m2

B is large, which is the case for most pulsars – the beam is strongly
scattered, and a large region of the scattering screen contributes to the observed electric
field phase. Basically, this is a function of the refractive scale increasing with wavelength
(see Table 5.3). Figures 5.8 and 5.9 show the results of these simulations.
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Figure 5.8 – ∆DM determination in weak scattering. For λ = 10 cm, m2
B ≈ 0.1, and for λ = 50

cm, m2
B = 10. The units of DM are pc/cm3.
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Figure 5.9 – ∆DM determination in strong scattering. For λ = 10 cm, m2
B = 10, and for λ = 50

cm, m2
B ≈ 1000. The units of DM are pc/cm3.
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Regime Weak Scattering Strong Scattering
λ 10 cm 50 cm 10 cm 50 cm

m2
B 0.105 10 10 956

sF 0.45 1 1 2.24
dλ 0.083 0.094 0.083 0.094
dx 0.07 0.07 0.01 0.01
sd 6.4 3.1 21.5 3.12
sr 6.4 50 350 12000

τscatt 0.01 0.32 0.28 77

Table 5.4 – Simulation parameters used for the ∆DM comparison. The values of sd, sr, and τscatt

are given in pixels/samples.

We conclude that the formula specifying how delay relates to ∆DM, Eq. 5.2, accurately
describes interstellar propagation effects most precisely when the scattering screen is a
uniform, flat slab of ions (the limiting case of m2

B = 0). It only accounts for frequency
effects, dispersion – not the effects of a spatially varying dispersion measure, which causes
scattering (refraction and diffraction). It is not yet clear how quickly this observational
(PPTA) method breaks down as scattering strength increases, or if there is a way to improve
it.

While the agreement between the observational and true DM variation in Figure 5.8 is
remarkably good in the case of m2

B = 0.1 for λ = 10 cm, we must consider the scale of the
variation. The best techniques can measure a ∆DM as small as 10−3 pc/cm3, and a typical
observed ∆DM is 10−2 pc/cm3 over a one year period [42]. Therefore, the small ∆DM
for m2

B = 0.1 on the order of 10−6 pc/cm3 is unmeasurable and unrealistic. But when
we increase the scattering strength, the observationally determined ∆DM is not a good
measure of the true ∆DM– it is difficult to accurately determine the dispersion measure.
We will continue to refine our analysis in order to improve ∆DM determinations in stronger
scattering regimes.



Chapter 6

Future Fun

I am glad that there is still much more to do with respect to this project. For anyone who
might participate in this research, there is no future work. There is only future fun.

Much fun remains to be had before the algorithm presented in §3.1 can be used in pulsar
timing routines. Most pulsars in the PPTA, for instance, are millisecond pulsars, which are
recycled (spun-up to millisecond periods, possibly through accretion) and extremely stable.
Our analysis is of PSR B1737+13, a normal pulsar with a period of 0.803 seconds [56;57]

whose scintillation behavior could be different than that of millisecond pulsars – we don’t
know. Using the algorithm on archived pulsar timing data where spectra were taken will
indicate whether the current algorithm is appropriate and whether such spectral analysis is
even possible.

The algorithm presented herein provides a post-detection correction for interstellar
delays. However, we would not be physicists if we didn’t want to predict delays. Measuring
the change in delay as arclets translate along scintillation arcs will determine whether or
not scattering delays can be predicted with our technique. Such a study would require
observations spaced out to appropriately resolve the refractive scale. B1737 is a good
candidate for study because its scintillation is well-suited for our technique (it was made
for B1737!), and the conclusion about the predictive power of our technique would be
unambiguous.

Though not directly applicable to pulsar timing, scintillation observations can be made
to track the distribution of arclet progenitors – compact, overdense structures – on the sky.
A map of their spatial distribution might provide insight into the physical processes in the
ISM that are creating these structures. Ultimately, a better understanding of the ISM will
help us correct for interstellar propagation effects.

There is fun ahead on the theoretical and simulation fronts as well. The Coles wave-
propagation simulation does not have the ingredients to replicate all the observed features
in the Secondary Spectrum. In particular, arclets are missing from the simulation, and they
need to be found. One project in progress searches for arclets by masking the scattering
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screen to simulate spatially compact structures in the ISM. Another possible investigation
is the use of multiple scattering screens to simulate an extended medium.

We have made several approximations in our theoretical analysis of the effect of prop-
agation delays on TTA timing points. One is the t0τ Model, another is a constraint of the
relative widths of the impulse response and intrinsic pulse. While these approximations
have been quite useful and have led to important insights, there is the chance that they
could be obscuring some important subtleties. By working directly with the TTA cross-
correlation equation and a more general expression for the impulse response, we may be
able to exactly describe the effect of interstellar propagation on timing residuals.

These forays do not even begin to quantify the amount of “low-hanging fruit” on the
trees of pulsar scintillation spectra and GW astrophysics. With the possibility of GW detec-
tions in the near future from LIGO or LISA, gravitational-wave astrophysics is burgeoning.
We can truly propel the science by using pulsar timing to its fullest in the meantime, and
that will require us to use everything we know about pulsars and the ISM.

Onwards and upwards.



Appendix A

On Dedispersion

The dispersion relation for electromagnetic waves is,

k(ω) =
ω

c
n, (A.1)

where n is the index of refraction of the propagation medium. In a vacuum, it’s the familiar
k = ω/c because the index of refraction is n = 1. When that wave enters a tenuous, cold
plasma, the dispersion relation becomes

k(ω) =
ω

c

√
1−

ω2
p

ω2
, (A.2)

where ω is the wave frequencya and ωp is the plasma frequency,

ωp =

√
e2ne

meε0
. (A.3)

in mks units. Notice that an index of refraction n < 1 is implied for this medium.

From the dispersion relation, the following important quantities are derivable. The
group velocity (the speed at which a wave packet propagates through the medium) is

vg(ω) =
∂ω

∂k
. (A.4)

Group delay, the total propagation time of a wave packet, is given by

tg =
∫ D

0

1
vg

d` (A.5)

=
∫ D

0

∂k

∂ω
d` (A.6)

aWe have used ν for frequency in the body of the thesis. The switch to ω = 2πν was made here to

simplify the expressions.
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And the “group phase” is given by

φg(ω) =
∫

tg dω (A.7)

=
∫ D

0

∫
∂k

∂ω
dω d` (A.8)

=
∫ D

0
k(ω) d` (A.9)

Finally, the transfer function (the spectral filter that characterizes the medium’s effect on
a propagating wave) is

H(ω) = exp
[
−i

∫ D

0
k(ω) d`

]
(A.10)

= exp [−iφg(ω)] (A.11)

This is as far as we can go without introducing the approximation for when ωp �
ω, which is always true in the ISM because the plasma frequency ωp ∝ kHz, while the
observation frequency ω ∝ MHz or GHz. Using the binomial expansion, the group delay
can be reduced to

tg =
1
c

∫ D

0

[
1−

ω2
p

ω2

]−1/2

d` (A.12)

≈ 1
c

∫ D

0

[
1 +

ω2
p

2ω2

]
d` (A.13)

≈ 1
c

[
D +

e2

2meε0 ω2

∫ D

0
ne d`

]
(A.14)

≈ D

c
+

e2DM
2meε0c ω2

(A.15)

and the group phase can be reduced to

φg =
∫

tg dω (A.16)

≈
∫ (

D

c
+

e2DM
2meε0c ω2

)
dω (A.17)

≈ D

c
ω − e2DM

2meε0c ω
(A.18)

Thus, our ultimate equation for the transfer function relies only on the assumption of cold,
tenuous plasma with a plasma frequency ωp � ω.

H(ω) ≈ exp

[
−iω

D

c
+ i

e2DM
2meε0c ω

]
(A.19)

H(λ) ≈ exp

[
−i

2πD

λ
+ iλ

e2DM
4πmeε0c2

]
(A.20)
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But when we also restrict the bandwidth to be much less than the frequency, the arguments
of both exponentials are essentially linear in the independent variable. When φg is expanded
in a Taylor series, then the terms are accounting for the degree to which 1/ω deviates from
−ω.

The impulse response of the medium is the power spectrum of the transfer function,

h(t) = |H̃(fω)|2. (A.21)

When the phase of the transfer function is linear in ω, then the phase contribution from
DM induces a time shift in the impulse response with respect to an undeviated wave.
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Appendix B

Analysis of t̂0

In this appendix we analyze the behavior of a quantity that was introduced in section 5.2
to describe the time offset behavior of an Impulse Response that does not have a precise
time offset. Whereas t0 is the offset in the t0τ Model, we use an effective offset (Dispersion
Delay)

t̂0 ≡ ∆t(h, 〈h〉) (B.1)

in the Coles simulation data. We also introduced an effective width (Scattering Delay)

τ̂ ≡ ΓR. (B.2)

The similarities between the t0τ and Effective Delays are

Γh = t0 + τ (B.3)

Γh = t̂0 + τ̂ (B.4)

The differences are

τ̂ 6= Γ′h (B.5)

t̂′0 6= 0 (B.6)

where a primed symbol refers to a dedispersed quantity.

A simple thought experiment helps to probe the meaning of these effective delays.
Consider a set of t0τ Impulse Responses with a set of t0 and τ . First, let τ be constant and
let t0 vary.

h(t, y) = H(t− t0(y)) exp [(t− t0(y))/τ ] (B.7)

We know analytically that τ̂ = τ since this is the t0τ Model. Because the ensemble-average
Impulse Response, 〈h〉, is broadened symmetrically by the range of t0, we find numericallya

that t̂0 = t0 (see Fig. B.1).
aThe numerical analysis used 100 impulse responses whose offsets t0 and widths τ were Gaussian random

deviates.
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Second, let τ vary and let t0 be constant.

h(t, y) = H(t− t0) exp [(t− t0)/τ(y)] (B.8)

The ensemble-average Impulse Response, 〈h〉, will assume a width that is the average of τ ,
but it may not strictly be a decaying exponential. We find numerically that t̂0 ≈ 0 (see Fig.
B.2), but that it has a functional relationship with τ .

Finally, let both τ and t0 vary. We find numerically that Γh = t̂0 + τ , but no other
relationships can be found (see Figs. B.3 and B.4).
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Figure B.1 – The effective offset t̂0 correlates well with t0 when τ is constant. There is almost a
functional equivalence between the two.
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Figure B.2 – The effective offset t̂0 is approximately zero when t0 is constant. However, there
is an unexpected almost quadratic relationship between t̂0 and τ . In a timing sense this is
inconsequential because the variation in τ is orders of magnitude larger than the variation in t̂0.
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Figure B.3 – When both t0 and τ vary (with the same standard deviation), the effective offset t̂0
is almost equivalent to t0 and has no correlation with τ .
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Figure B.4 – The effective offset t̂0 added to τ is an almost functional equivalence regardless of
the standard deviation of t0 and τ . This is predicted by Eq. B.4, noting that when using the t0τ

Model, τ̂ = τ .
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Appendix C

Glossary

Acronym Terminology

ACF Autocorrelation Function
AU Astronomical Unit
BH Black Hole
BW Bandwidth
DFT Discrete Fourier Transform
DM Dispersion Measure
FT Fourier Transform
GW Gravitational Wave

HWHM Half-width at Half-maximum
ISM Interstellar Medium

LIGO Laser Interferometer Gravitational-wave Observatory
LISA Laser Interferometer Space Antenna
PPTA Parkes Pulsar Timing Array
PTA Pulsar Timing Array
SNR Signal to Noise Ratio
TOA Time Of Arrival
TTA Taylor Timing Algorithm

WAPP Wideband Arecibo Pulsar Processor
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Symbol Generalized Expressions

RX ACF of X

PX Power Spectrum of X

ΓX Centroid of X

σ2
X Variance of X

σX Standard Deviation of X

σX,Y Covariance of X and Y

ρ(X, Y ) Correlation coefficient between X and Y

∆t(X,Y) TTA timing point of X with respect to Y

X̃ Fourier Transform of X

Symbol Specific Expressions

i(t) Intrinsic Pulse Profile
p(t) Observed Pulse Profile
h(t) Impulse Response
∆t Timing Residual

Rh(t) ACF of the Impulse Response
Γh Centroid of the Impulse Response

ΓRh
(T ) Cumulative Delay

ΓRh
,ΓR Centroid of the ACF of the Impulse Response
τ Scattering Delay, Width of the t0τ Impulse Response and its ACF
t0 Dispersion Delay, Offset of the t0τ Impulse Response

E(t, ν) Electric Field
I(t, ν) Dynamic Spectrum

RI(t, ν) ACF of the Dynamic Spectrum
∆νd Diffractive Bandwidth
∆td Diffractive Timescale
τscatt Scattering Delay, determined by ∆νd

sF Fresnel Scale
sd Diffractive/Coherence Scale
sr Refractive Scale
dλ Fractional Bandwidth
m2

B Square Born Scattering Index
Nν Number of Frequency Channels
τ̂ Effective Scattering Delay, Coles simulation data analysis
t̂0 Effective Dispersion Delay, Coles simulation data analysis

H(t− t0) Heaviside Step Function
� Fourier Transform



Appendix D

Code

Many thousands of lines of code have been written (in MATLAB) for processing the Coles
simulation output data and for processing the B1737 data. The hearts of these two
processing scripts are included here. For the Coles simulation output processing:

%%%%%%%%%%%%%%%%%%%%%%%% Last Updated: 20 Mar. 2007 %%%%%%%%%%%%%%%%%%%%%%%

%

%************************* HELP FILE INFORMATION *************************%

% [h(y,t), S(y,t)] = distfn_ProcessEfield(Vars)

%

% The observer plane (complex E-field) is stored in N_f arrays.

%

% This is a procedure to take a complex E-field (spatial, spatial) in each

% frequency array and calculate:

% 1. Impulse Response of the screen is the output averaged by a specified

% method.

% 2. Dynamic spectrum averaged by a specified method. The UN-WINDOWED

% E-field is used to create this.

% To normalize power between the Impulse Response and Dynamic

% Spectrum, multiply the Dynamic Spectrum by the SQUARED 1-D window

% (in the spatial dimension) that was used to create the Impulse

% Response.

%

% Dependent function files:

% - fn_ReadHeader

% - fn_Dedisperse

% - distfn_JobStartup

%*************************************************************************%
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function [h,S] = distfn_ProcessEfield(Vars)

tic

%%%%%%%%%%%%%%%% Prepare for Data Import /// Set Variables %%%%%%%%%%%%%%%%

%Extract the variables from Vars

Path_Efield = Vars{1};

Path_Header = Vars{2};

Rows = Vars{3};

Pad = Vars{4};

FTfilter = Vars{5};

Precision = Vars{6};

NumNodes = Vars{7};

TaskNum = Vars{8};

RowAvgMat = Vars{9};

ColAvgMat = Vars{10};

Dedisperse = Vars{11};

Phase = Vars{12};

CodeDir = Vars{13};

%Adjust directory settings

cd(CodeDir);

addpath([CodeDir,’../..’]);

%Get necessary parameters from the simulation header file

[N_x, N_f] = fn_ReadHeader(Path_Header)

%Specify the particular rows (y) to extract.

RowStart = Rows(1)

RowEnd = Rows(end)

%Two matrices, RowAvgMat/ColAvgMat, are given to every node. On each row

%of these matrices is a list of spatial pixels that should be averaged.

%This will be done using ColAvgMat for every row, and then each node will

%average the rows with RowAvgMat as best they can. dist_ProcessEfield will

%average the output of distfn_ProcessEfield together appropriately, since

%there is no guarantee that (because of the particular rows each node will

%get) it will be able to average the rows completely.

%Determine the number of blocks to be averaged together (and how many

%columns each block includes, ColsPerBlock)

[N_ColBlocks, ColsPerBlock] = size(ColAvgMat)
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[N_RowBlocks, RowsPerBlock] = size(RowAvgMat)

%Determine which block of rows RowStart and RowEnd belong to

[RowStart_Block, temp] = find(RowAvgMat == RowStart)

[RowEnd_Block, temp] = find(RowAvgMat == RowEnd)

N_RowBlocks = RowEnd_Block - RowStart_Block + 1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%******************************* Load Data *******************************%

%Change the frequency order depending on the task number (this decreases

%the nodes simultaneously trying to access the same data).

FreqOrder = circshift((1:N_f)’, round((1-TaskNum)*N_f/NumNodes));

%Open the files for reading for each jobTask

for n = 1:N_f

f = FreqOrder(n);

%Open each of the N_f input files

FreqNum = num2str(f);

while length(FreqNum) < 4

FreqNum = strcat(’0’, FreqNum);

end

Path_Slice = [Path_Efield, FreqNum, ’.2d’];

FileID(f) = fopen(Path_Slice, ’r’);

end

toc

%Create a Fourier Transform filter, if specified

if ~isempty(FTfilter)

FilterFunction = str2func(FTfilter);

Filter_FT = repmat(FilterFunction(N_f),[1, N_x])’;

end

%Seek to the appropriate starting row of the data (Complex Data)

for n = 1:N_f

f = FreqOrder(n);

setRowStart = fseek(FileID(f), 8*(RowStart-1)*N_x, ’bof’);

end



68 APPENDIX D. CODE

%Initialize the Efield array and the output, h and S

Efield = zeros([N_x, N_f], ’single’);

h = zeros([N_RowBlocks*N_ColBlocks, N_f], ’single’);

S = zeros([N_RowBlocks*N_ColBlocks, N_f], ’single’);

%*************************************************************************%

%******************************* Main Loop *******************************%

%Calculate h and S for each row

Time = toc

for y = RowStart:RowEnd

for n = 1:N_f

f = FreqOrder(n);

%Load one spatial row of the E-field

EData = fread(FileID(f), [2, N_x], [’*’,Precision]);

Efield(:,f) = EData(1,:) + i*EData(2,:);

end

if Dedisperse == ’y’

%Load one spatial row of the phase screen

PhaseRow = Phase(y-RowStart+1,:);

%Perform the phase correction for each (x,f) of this row.

Vars = {Path_Header, PhaseRow, Efield};

Efield = fn_Dedisperse(Vars,’prrow’);

end

ReadTime = toc - Time

Time = toc;

%Initialize some quantities

IR_onerow = zeros(N_ColBlocks,N_f);

Spect_onerow = zeros(N_ColBlocks,N_f);

%Determine which row-blocks this row belongs to

[RowBlock, temp] = find(RowAvgMat == y)

%Determine the blocks to put these in S and h.

RowDiff = RowBlock - RowStart_Block + 1

TempBlocks = (RowDiff-1)*N_ColBlocks+1 : RowDiff*N_ColBlocks
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%*********************************************************

%Create Dynamic Spectrum (BEFORE windowing)

Spect = conj(Efield).*Efield;

%Sum the spectrum over ColsPerBlock column-blocks for this row

for n = 1:N_ColBlocks

Spect_block = Spect(1+(n-1)*ColsPerBlock : n*ColsPerBlock, :);

Spect_onerow(n,:) = sum(Spect_block,1);

end

%Add the row into the appropriate row-block

S(TempBlocks,:) = S(TempBlocks,:) + Spect_onerow;

%*********************************************************

%If Specified, apply the FT filter to the E-field

if ~isempty(FTfilter)

Efield = Filter_FT.*Efield;

end

%FT the E-field over all frequencies for each spatial pixel, x

if Pad == ’y’

ft_Efield = fft(Efield, 2*N_f, 2);

elseif Pad == ’n’

ft_Efield = fft(Efield, [], 2);

end

%Calculate the impulse response at each spatial pixel of this row, x

IR = conj(ft_Efield).*ft_Efield;

%Sum IR over ColsPerBlock column-blocks for this row.

for n = 1:N_ColBlocks

IR_block = IR(1+(n-1)*ColsPerBlock : n*ColsPerBlock, :);

IR_onerow(n,:) = sum(IR_block,1);

end

%Accumulate the averages from each row within one chunk

h(TempBlocks,:) = h(TempBlocks,:) + IR_onerow;

%*********************************************************

ComputationTime = toc - Time

Time = toc;

end

%*************************************************************************%
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And for the B1737 data processing:

%%%%%%%%%%%%%%%%%%%%%%%% Last Updated: 15 Jan. 2007 %%%%%%%%%%%%%%%%%%%%%%%

%

%************************* HELP FILE INFORMATION *************************%

% [Delay, Varargout] = fn_PT_SingleInput( WAPP,ImageNum,DataInput )

%

% This is a function m-file that takes a data path (either Dynamic or

% Secondary spectrum) and calculates the delay for PSR B1737+13.

%

% Dependent function files:

% - fn_mk_from_ObsDyn

% - fn_ObsDyn_PlotRange

% - fn_ObsSec_PlotRange

% - fn_dBHistogramMode

% - fn_FindLocByInterp

%*************************************************************************%

function [SecDelay,AcfDelay,varargout] = fn_PT_SingleInput(WAPP,...

ImageNum,DataInput)

%*********************** Import and Organize Data ***********************%

%Unpack DataInput

Pulsar = DataInput{1};

Num_f = DataInput{2};

Window = DataInput{3};

Zeropad = DataInput{4};

Zeromean = DataInput{5};

Dyn_tSize = DataInput{6};

Dyn_tShift = DataInput{7};

VisualCheck = DataInput{8};

SaveVisCheck = DataInput{9};

TrimScale = DataInput{10};

SaveDir = DataInput{11};

Color = DataInput{12};

Root = DataInput{13};

Aux = DataInput{14};

VisualAux = DataInput{15};

SaveVisAux = DataInput{16};
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%Data path information

MJDlist_path = [Root,’MJDlist.txt’];

FREQlist_path = [Root,’FREQlist.txt’];

Directory = [’w’,num2str(WAPP),’\’];

%Load the file list (specified by MJD of observation)

MJDlist = load(’-ascii’, MJDlist_path);

MJD = num2str(MJDlist(ImageNum));

%Load observational parameters

FREQlist = load(’-ascii’, FREQlist_path);

Freq = FREQlist(WAPP); %in MHz

BW = 50; %in MHz

ChannelWidth = BW/Num_f; %in MHz

SamplingInterval = 10; %in seconds

MaxDelay = 1/(2*ChannelWidth); %in microseconds

MaxFringeFreq = 1000/(2*SamplingInterval); %in mHz

%select the file specified by ImageNum

DataPath = [Root,Directory,Pulsar,’.wapp’,num2str(WAPP),’.’,MJD,’.0.dyn.fit’]

Dyn = fitsread(DataPath)’;

[Num_f, Num_t] = size(Dyn)

%Begin the dynamic spectrum time-partition sequence

%Caclulate the total number of realizations possible

NumDyn = floor((1-Dyn_tSize)/Dyn_tShift)+1

for N = 1:NumDyn

tRange = floor([(N-1)*Num_t*Dyn_tShift+1, ...

Num_t*((N-1)*Dyn_tShift + Dyn_tSize)]);

DynChunk = Dyn(:, tRange(1):tRange(2));

DynChunk = DynChunk/max(max(DynChunk));

%Calculate the Secondary Spectrum with the specified options

Output = fn_mk_from_ObsDyn(DynChunk,’sec’,’acf’,{’Zeromean’,Zeromean},...

{’Zeropad’,Zeropad},{’Window’,Window});

sec = Output{1};

acf = Output{2};
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%Size of data

[Num_ff,Num_ft] = size(sec);

%Cut in half, shift, and scale the Secondary Spectrum

sec = sec(1:Num_ff/2,:); %This includes the unique central row

sec = fftshift(sec,2)/max(max(sec));

[Num_ff,Num_ft] = size(sec)

%Convert the Secondary Spectrum to a decibels scale

secdb = 10*log10(sec/max(max(sec)));

%************************************************************************%

%************** Set Secondary Spectrum Processing Variables **************%

%Correct for central spike (y/n/m)

%(NOTE: ’m’ checks to see if correction is needed)

Spike = ’m’;

Width = 4; %half the width of the spike in pixels

Tolerance = 10;

%(NOTE: for Spike = ’m’,

%if P(spike) > Tolerance*BackgroundNoise, UseSpike = ’y’)

%Size of "delay ~0 bias removal" samples

DelayFrac = 1/10;

FreqFrac = 1/5;

%Size of "background noise removal" samples (NOTE: for Mode = 1 only)

DelayFrac2 = (1-DelayFrac) - 5/Num_ff;

FreqFrac2 = 1/10;

%*************************************************************************%

toc

%*********************** Noise Reduction Algorithm ***********************%

%The dimensions of the bias and noise boxes in pixels

PixDelay = round(Num_ff*DelayFrac);

PixFreq = round(Num_ft*FreqFrac);

PixDelay2 = round(Num_ff*DelayFrac2);

PixFreq2 = round(Num_ft*FreqFrac2);
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%%%%%%%Account for the Background Noise

%Background noise analysis mode

% 1 = Background Sample

% 2 = Histogram Mode

NoiseCalcMode = 2

if NoiseCalcMode == 1

%The linear power of the mode of the dB (splined)

%histogram is the background

Method = 1;

NumHistBins = (Num_ff + Num_ft)/2;

Bins = linspace(min(min(secdb)),max(max(secdb)), NumHistBins);

BackgroundNoise(NoiseCalcMode) = fn_dBHistogramMode(sec, Bins, Method);

elseif NoiseCalcMode == 2

%The average of patch samples is the background

Sample1 = sec(Num_ff-PixDelay2:Num_ff,1:PixFreq2);

Sample2 = sec(Num_ff-PixDelay2:Num_ff,Num_ft-PixFreq2+1:Num_ft);

Noise(1) = mean(mean(Sample1));

Noise(2) = mean(mean(Sample2));

BackgroundNoise(NoiseCalcMode) = mean(Noise);

end

%Subtract the background noise (preserve sec)

Sec = sec - BackgroundNoise(NoiseCalcMode);

%%%%%%%Remove the delay ~0 bias

%Find the mean intensity of each delay row within the bias boxes

MeanIntensity1 = mean(Sec(1:PixDelay,1:PixFreq), 2);

MeanIntensity2 = mean(Sec(1:PixDelay,Num_ft-PixFreq+1:Num_ft), 2);

MeanIntensity = (MeanIntensity1+MeanIntensity2)/2;

%Subtract the bias weight from each delay row

for n = 1:PixDelay

Sec(n,:) = Sec(n,:) - MeanIntensity(n);

end

%%%%%%%Account for central spike in image (temporary solution)

Half_ft = round(Num_ft/2);

if Spike == ’y’

Sec(PixDelay+5:Num_ff,Half_ft-Width:Half_ft+Width) = 0;
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UseSpike = ’y’;

elseif Spike == ’m’

if mean(mean(sec(2*PixDelay+5:Num_ff,Half_ft-Width:Half_ft+Width)))

> Tolerance*BackgroundNoise(NoiseCalcMode)

Sec(PixDelay:Num_ff,Half_ft-Width:Half_ft+Width) = 0;

UseSpike = ’y’;

else UseSpike = ’n’;

end

elseif Spike == ’n’

UseSpike = ’n’;

end

%***************************************************************%

%%%%%%%%%%%%%%%%%% Find Delay from Secondary Spectrum %%%%%%%%%%%%%%%%%

%Sum of power at each index of delay (ACF of scattered pulse)

Weight = sum(Sec,2);

%Weight each index by the power at that delay

Index = linspace(1,Num_ff,Num_ff)’;

WeightedIndex = Weight.*Index;

%Caclulate the delay as a function of integration duration

CumDelayIndex = cumsum(WeightedIndex)./cumsum(Weight);

%Convert from delay indices to delay in microseconds

CumDelay = (MaxDelay/(Num_ff-1))*(CumDelayIndex-1);

%The Delay is the maximum element of CumDelay (INSTEAD of the last)

[SecDelay(N), MaxLoc] = max(CumDelay);

%%%%%%%%%%%%%%%% Find Delay from Dynamic Spectrum ACF %%%%%%%%%%%%%%%%%

%Calculate the ACF of the Dynamic Spectrum from the PROCESSED sec,

%retaining the unique central row when recreating the full secondary.

FullSec(Num_ff+1:2*Num_ff,:) = Sec;

FullSec(2:Num_ff,:) = fliplr(flipud(Sec(2:Num_ff,:)));

Acf = ifft2(FullSec);

Acf = sqrt(Acf.*conj(Acf));

%Extract the zero time-lag column (for the diffractive bandwidth)
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Acf_t0 = Acf(:,1);

%Interpolate to find the HWHM point of Acf_t0.

InterpACF_HWHM = fn_FindLocByInterp(Acf_t0,’WHM’);

%Convert pixel number of HWHM into physical units (MHz)

deltaF = (InterpACF_HWHM-1)*ChannelWidth;

AcfDelay(N) = 1/(2*pi*deltaF); %in microseconds

if Aux == ’y’

%Extract the zero frequency-lag row (for the diffractive timescale)

Acf_f0 = Acf(1,:);

%Interpolate to find the 1/e point of Acf_f0.

InterpACF_1oe = fn_FindLocByInterp(Acf_f0,’1/e’);

%Convert pixel number of 1/e point into physical units (seconds)

deltaT(N) = (InterpACF_1oe-1)*SamplingInterval;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%If auxilliary information has been requestd, assign it to varargout

if Aux == ’y’

varargout = {deltaT,deltaF};

end
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