393 research outputs found

    Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Get PDF
    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity

    Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration

    Get PDF
    Tumor stroma-secreted growth factors, cytokines, and reactive oxygen species (ROS) influence tumor development from early stages to the metastasis phase. Previous studies have demonstrated downregulation of ROS-producing extracellular superoxide dismutase (SOD3) in thyroid cancer cell lines although according to recent data, the expression of SOD3 at physiological levels stimulates normal and cancer cell proliferation. Therefore, to analyze the expression of SOD3 in tumor stroma, we characterized stromal cells from the thyroid. We report mutually exclusive desmoplasia and inflammation in papillary and follicular thyroid cancers and the presence of multipotent mesenchymal stem/stromal cells (MSCs) in non-carcinogenic thyroids and papillary thyroid cancer (PTC). The phenotypic and differentiation characteristics of Thyroid MSCs and PTC MSCs were comparable with bone marrow MSCs. A molecular level analysis showed increased FIBROBLAST ACTIVATING PROTEIN, COLLAGEN 1 TYPE A1, TENASCIN, and SOD3 expression in PTC MSCs compared to Thyroid MSCs, suggesting the presence of MSCs with a fibrotic fingerprint in papillary thyroid cancer tumors and the autocrine-paracrine conversion of SOD3 expression, which was enhanced by cancer cells. Stromal SOD3 had a stimulatory effect on cancer cell growth and an inhibitory effect on cancer cell migration, thus indicating that SOD3 might be a novel player in thyroid tumor stroma

    Iranian version of the quality of life in adult cancer survivors (Qlacs) questionnaire: Examining face and content validity, exploratory factor analysis and reliability

    Get PDF
    Background: Quality of life among cancer patients after diagnosis and treatment steps is an important factor in preventing further cancer complications. Thus, appropriate tools to evaluate the quality of life among this group are required. Quality of life in Adult Cancer Survivors (QLACS) questionnaire is a suitable tool which evaluates different aspects of life among cancer survivors. Objectives: This study evaluated the Persian version of the QLACS questionnaire among Iranian short-survivors of breast cancer by assessing its validity and reliability. Methods: The QLACS was translated to Persian for this study. The questionnaire�s face and content validity were assessed by a panel of experts by the impact score, content validity ratio, and index methods. In the next step, the questionnaire was filled out by 150 women with breast cancer who were diagnosed 1.5-5 years before this study. Explanatory factor analysis was performed to assess factors. Reliability was evaluated using Cronbach�s alpha. Results: Overall, 37 items were selected for explanatory factor analysis that had an impact score of more than 1.5, content validity ratio (CVR) more than 0.99, and a suitable content validity index (CVI). In factor analysis, 10 factors were extracted via varimax rota-tion, accounting for 75.8 of the total variance. Cronbach�s alpha of all the factors was more than 0.7, that was similar to the original questionnaire. Conclusions: We conclude that the Persian version of the QLACS questionnaire has optimal properties for the assessment of quality of life among Iranian short-survivors of breast cancer

    Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Components of the microenvironment such as bone marrow stromal cells (BMSCs) are well known to support multiple myeloma (MM) disease progression and resistance to chemotherapy including the proteasome inhibitor bortezomib. However, functional distinctions between BMSCs in MM patients and those in disease-free marrow are not completely understood. We and other investigators have recently reported that NF-κB activity in primary MM cells is largely resistant to the proteasome inhibitor bortezomib, and that further enhancement of NF-κB by BMSCs is similarly resistant to bortezomib and may mediate resistance to this therapy. The mediating factor(s) of this bortezomib-resistant NF-κB activity is induced by BMSCs is not currently understood.</p> <p>Results</p> <p>Here we report that BMSCs specifically derived from MM patients are capable of further activating bortezomib-resistant NF-κB activity in MM cells. This induced activity is mediated by soluble proteinaceous factors secreted by MM BMSCs. Among the multiple factors evaluated, interleukin-8 was secreted by BMSCs from MM patients at significantly higher levels compared to those from non-MM sources, and we found that IL-8 contributes to BMSC-induced NF-κB activity.</p> <p>Conclusions</p> <p>BMSCs from MM patients uniquely enhance constitutive NF-κB activity in MM cells via a proteinaceous secreted factor in part in conjunction with IL-8. Since NF-κB is known to potentiate MM cell survival and confer resistance to drugs including bortezomib, further identification of the NF-κB activating factors produced specifically by MM-derived BMSCs may provide a novel biomarker and/or drug target for the treatment of this commonly fatal disease.</p

    A high throughput method for genome-wide analysis of retroviral integration

    Get PDF
    Retroviral and lentiviral vectors integrate their DNA into the host cell genome leading to stable transgene expression. Integration preferentially occurs in the proximity of active genes, and may in some case disturb their activity, with adverse toxic consequences. To efficiently analyze high numbers of lentiviral insertion sites in the DNA of transduced cells, we developed an improved high-throughput method called vector integration tag analysis (VITA). VITA is based on the identification of Genomic Tags associated to the insertion sites, which are used as signatures of the integration events. We use the capacity of MmeI to cleave DNA at a defined distance of its recognition site, in order to generate 21 bp long tags from libraries of junction fragments between vector and cellular DNA. The length of the tags is sufficient in most cases, to identify without ambiguity an unique position in the human genome. Concatenation, cloning and sequencing of the tags allow to obtain information about 20–25 insertion sites in a single sequencing reaction. As a validation of this method, we have characterized 1349 different lentiviral vector insertion sites in transduced HeLa cells, from only 487 sequencing reactions, with a background of <2% false positive tags

    Mice Engrafted with Human Fetal Thymic Tissue and Hematopoietic Stem Cells Develop Pathology Resembling Chronic Graft-versus-Host Disease

    Get PDF
    AbstractChronic graft-versus-host disease (cGVHD) is a significant roadblock to long-term hematopoietic stem cell (HSC) transplantation success. Effective treatments for cGVHD have been difficult to develop, in part because of a paucity of animal models that recapitulate the multiorgan pathologies observed in clinical cGVHD. Here we present an analysis of the pathology that occurs in immunodeficient mice engrafted with human fetal HSCs and implanted with fragments of human fetal thymus and liver. Starting at time points generally later than 100 days post-transplantation, the mice developed signs of illness, including multiorgan cellular infiltrates containing human T cells, B cells, and macrophages; fibrosis in sites such as lungs and liver; and thickened skin with alopecia. Experimental manipulations that delayed or reduced the efficiency of the HSC engraftment did not affect the timing or progression of disease manifestations, suggesting that pathology in this model is driven more by factors associated with the engrafted human thymic organoid. Disease progression was typically accompanied by extensive fibrosis and degradation of the thymic organoid, and there was an inverse correlation of disease severity with the frequency of FoxP3+ thymocytes. Hence, the human thymic tissue may contribute T cells with pathogenic potential, but the generation of regulatory T cells in the thymic organoid may help to control these cells before pathology resembling cGVHD eventually develops. This model thus provides a new system to investigate disease pathophysiology relating to human thymic events and to evaluate treatment strategies to combat multiorgan fibrotic pathology produced by human immune cells

    Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo

    Get PDF
    We treated 10 children with X-linked SCID (SCID-X1) using gammaretrovirus-mediated gene transfer. Those with sufficient follow-up were found to have recovered substantial immunity in the absence of any serious adverse events up to 5 years after treatment. To determine the influence of vector integration on lymphoid reconstitution, we compared retroviral integration sites (RISs) from peripheral blood CD3(+) T lymphocytes of 5 patients taken between 9 and 30 months after transplantation with transduced CD34(+) progenitor cells derived from 1 further patient and I healthy donor. Integration occurred preferentially in gene regions on either side of transcription start sites, was clustered, and correlated with the expression level in CD34(+) progenitors during transduction. In contrast to those in CD34(+) cells, RISs recovered from engrafted CD3(+)T cells were significantly overrepresented within or near genes encoding proteins with kinase or transferase activity or involved in phosphorus metabolism. Although gross patterns of gene expression were unchanged in transduced cells, the divergence of RIS target frequency between transduced progenitor cells and post-thymic T lymphocytes indicates that vector integration influences cell survival, engraftment, or proliferation

    GRFS and CRFS in alternative donor hematopoietic cell transplantation for pediatric patients with acute leukemia.

    Get PDF
    We report graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) (a composite end point of survival without grade III-IV acute GVHD [aGVHD], systemic therapy-requiring chronic GVHD [cGVHD], or relapse) and cGVHD-free relapse-free survival (CRFS) among pediatric patients with acute leukemia (n = 1613) who underwent transplantation with 1 antigen-mismatched (7/8) bone marrow (BM; n = 172) or umbilical cord blood (UCB; n = 1441). Multivariate analysis was performed using Cox proportional hazards models. To account for multiple testing, P \u3c .01 for the donor/graft variable was considered statistically significant. Clinical characteristics were similar between UCB and 7/8 BM recipients, because most had acute lymphoblastic leukemia (62%), 64% received total body irradiation-based conditioning, and 60% received anti-thymocyte globulin or alemtuzumab. Methotrexate-based GVHD prophylaxis was more common with 7/8 BM (79%) than with UCB (15%), in which mycophenolate mofetil was commonly used. The univariate estimates of GRFS and CRFS were 22% (95% confidence interval [CI], 16-29) and 27% (95% CI, 20-34), respectively, with 7/8 BM and 33% (95% CI, 31-36) and 38% (95% CI, 35-40), respectively, with UCB (P \u3c .001). In multivariate analysis, 7/8 BM vs UCB had similar GRFS (hazard ratio [HR], 1.12; 95% CI, 0.87-1.45; P = .39), CRFS (HR, 1.06; 95% CI, 0.82-1.38; P = .66), overall survival (HR, 1.07; 95% CI, 0.80-1.44; P = .66), and relapse (HR, 1.44; 95% CI, 1.03-2.02; P = .03). However, the 7/8 BM group had a significantly higher risk for grade III-IV aGVHD (HR, 1.70; 95% CI, 1.16-2.48; P = .006) compared with the UCB group. UCB and 7/8 BM groups had similar outcomes, as measured by GRFS and CRFS. However, given the higher risk for grade III-IV aGVHD, UCB might be preferred for patients lacking matched donors. © 2019 American Society of Hematology. All rights reserved

    Impact of natural killer cells on outcomes after allogeneic hematopoietic stem cell transplantation: A systematic review and meta-analysis.

    Get PDF
    Background: Natural killer (NK) cells play a vital role in early immune reconstitution following allogeneic hematopoietic stem cell transplantation (HSCT). Methods: A literature search was performed on PubMed, Cochrane, and Clinical trials.gov through April 20, 2022. We included 21 studies reporting data on the impact of NK cells on outcomes after HSCT. Data was extracted following the PRISMA guidelines. Pooled analysis was done using the meta-package (Schwarzer et al.). Proportions with 95% confidence intervals (CI) were computed. Results: We included 1785 patients from 21 studies investigating the impact of NK cell reconstitution post-HSCT (8 studies/1455 patients), stem cell graft NK cell content (4 studies/185 patients), therapeutic NK cell infusions post-HSCT (5 studies/74 patients), and pre-emptive/prophylactic NK cell infusions post-HSCT (4 studies/77 patients). Higher NK cell reconstitution was associated with a better 2-year overall survival (OS) (high: 77%, 95%CI 0.73-0.82 vs low: 55%, 95%CI 0.37-0.72; n=899), however, pooled analysis for relapse rate (RR) or graft versus host disease (GVHD) could not be performed due to insufficient data. Higher graft NK cell content demonstrated a trend towards a better pooled OS (high: 65.2%, 95%CI 0.47-0.81 vs low: 46.5%, 95%CI 0.24-0.70; n=157), lower RR (high: 16.9%, 95%CI 0.10-0.25 vs low: 33%, 95%CI 0.04-0.72; n=157), and lower acute GVHD incidence (high: 27.6%, 95%CI 0.20-0.36 vs low: 49.7%, 95%CI 0.26-0.74; n=157). Therapeutic NK or cytokine-induced killer (CIK) cell infusions for hematologic relapse post-HSCT reported an overall response rate (ORR) and complete response (CR) of 48.9% and 11% with CIK cell infusions and 82.8% and 44.8% with NK cell infusions, respectively. RR, acute GVHD, and chronic GVHD were observed in 55.6% and 51.7%, 34.5% and 20%, and 20.7% and 11.1% of patients with CIK and NK cell infusions, respectively. Pre-emptive donor-derived NK cell infusions to prevent relapse post-HSCT had promising outcomes with 1-year OS of 69%, CR rate of 42%, ORR of 77%, RR of 28%, and acute and chronic GVHD rates of 24.9% and 3.7%, respectively. Conclusion: NK cells have a favorable impact on outcomes after HSCT. The optimal use of NK cell infusions post-HSCT may be in a pre-emptive fashion to prevent disease relapse

    MSC-Regulated MicroRNAs Converge on the Transcription Factor FOXP2 and Promote Breast Cancer Metastasis

    Get PDF
    SummaryMesenchymal stem/stromal cells (MSCs) are progenitor cells shown to participate in breast tumor stroma formation and to promote metastasis. Despite expanding knowledge of their contributions to breast malignancy, the underlying molecular responses of breast cancer cells (BCCs) to MSC influences remain incompletely understood. Here, we show that MSCs cause aberrant expression of microRNAs, which, led by microRNA-199a, provide BCCs with enhanced cancer stem cell (CSC) properties. We demonstrate that such MSC-deregulated microRNAs constitute a network that converges on and represses the expression of FOXP2, a forkhead transcription factor tightly associated with speech and language development. FOXP2 knockdown in BCCs was sufficient in promoting CSC propagation, tumor initiation, and metastasis. Importantly, elevated microRNA-199a and depressed FOXP2 expression levels are prominent features of malignant clinical breast cancer and are associated significantly with poor survival. Our results identify molecular determinants of cancer progression of potential utility in the prognosis and therapy of breast cancer
    corecore