13 research outputs found

    Agro-morphological characterization and nutritional profiling of traditional Himalayan crop landraces for their promotion toward mainstream agriculture

    Get PDF
    The northwest Indian Himalayas are often regarded as a biological hotspot for the presence of rich agro-biodiversity harboring locally adapted traditional crop landraces facing utter neglect owing to modern agricultural systems promoting high-yielding varieties. Addressing this challenge requires extricating the potential of such cultivars in terms of agro-morphological and nutritional attributes. In this study, 29 traditional crop landraces of maize (11), paddy (07), finger millet (03), buckwheat (05), and naked barley (03) were characterized and evaluated for target traits of interest. In maize, Chitkanu emerged as an early maturing landrace (107 days) with high concentrations of zinc (Zn), iron (Fe), and potassium (K), and Safed makki showed the highest 100-seed weight (28.20 g). Similarly, Bamkua dhan exhibited high concentrations of K and phosphorus (P), and Lamgudi dhan showed a high protein content (14.86 g/100 g) among paddy landraces. Ogla-I and Phapra-I showed high contents of protein (14.80 g/100 g) and flavonoids (20.50 mg/g) among buckwheat landraces, respectively, followed by Nei-I, which exhibited the highest protein content (15.66 g/100 g) among naked barley landraces. Most of the target traits varied significantly (p < 0.05) among evaluated samples, except those associated with finger millet landraces. The grouping pattern obtained by principal component analysis (PCA) and multidimensional scaling (MDS) was congruent with the geographical relationship among the crop landraces. This study led to the identification of elite crop landraces having useful variations that could be exploited in plant breeding programs and biofortification strategies for future crop improvement. Our endeavor would aid in conserving the depleting Himalayan agro-biodiversity and promoting versatile traditional crops toward mainstream agriculture vis-à-vis future nutritional security

    SARS-CoV-2 Variants of Concern and Variations within Their Genome Architecture: Does Nucleotide Distribution and Mutation Rate Alter the Functionality and Evolution of the Virus?

    No full text
    SARS-CoV-2 virus pathogenicity and transmissibility are correlated with the mutations acquired over time, giving rise to variants of concern (VOCs). Mutations can significantly influence the genetic make-up of the virus. Herein, we analyzed the SARS-CoV-2 genomes and sub-genomic nucleotide composition in relation to the mutation rate. Nucleotide percentage distributions of 1397 in-house-sequenced SARS-CoV-2 genomes were enumerated, and comparative analyses (i) within the VOCs and of (ii) recovered and mortality patients were performed. Fisher’s test was carried out to highlight the significant mutations, followed by RNA secondary structure prediction and protein modeling for their functional impacts. Subsequently, a uniform dinucleotide composition of AT and GC was found across study cohorts. Notably, the N gene was observed to have a high GC percentage coupled with a relatively higher mutation rate. Functional analysis demonstrated the N gene mutations, C29144T and G29332T, to induce structural changes at the RNA level. Protein secondary structure prediction with N gene missense mutations revealed a differential composition of alpha helices, beta sheets, and coils, whereas the tertiary structure displayed no significant changes. Additionally, the N gene CTD region displayed no mutations. The analysis highlighted the importance of N protein in viral evolution with CTD as a possible target for antiviral drugs

    Image Enhancement and Features Extraction of Electron Microscopic Images Using Sigmoid Function and 2D-DCT

    No full text
    An innovative image enhancement and feature extraction technique that is based on the modified sigmoid function and two-dimensional DCT has been developed. The proposed technique uses a modified sigmoid function that accommodates the original microscopic input image characteristics. A novel block-based input value coupled with the modified sigmoid function is used in this proposed technique to provide good contrast enhancement of an image, resulting in localised contrast enhancement. Singular value decomposition played an important role after DCT because the singular value matrix determines the intensity values of the provided microscopic image. Changes in the singular values have an immediate impact on the intensity of the microscopic input image. The proposed methodology essentially converts the input picture into the SVD-DCT domain, normalises the singular value matrix, and finally reconstructs the enhanced image using inverse DCT. Simulation findings demonstrate that the proposed technique produces significantly superior improved results compared to other current approaches. Various essential characteristics of actinomycetes become evident once electron microscopic images are enhanced, such as long filaments, coils or spirals, rod shapes, and spore patterns. The presented method works successfully and efficiently for various bright and dark microscopic images

    Unveiling mysteries of quid-induced lichenoid reactions: A cross-sectional study

    No full text
    Lichenoid reactions occur exclusively in people who chew tobacco, areca nut, or both, in raw or any manufactured or processed form. The lesion is described as a lichen-planus–like lesion and is termed as quid-induced lichenoid reaction (QILR). In this cross-sectional study, amongst 935 quid consumers, 82 patients were diagnosed with QILR and it was seen that 65 patients used processed forms of tobacco and areca nut. Thereby, it could be concluded that QILR might occur because of flavors used in processing of tobacco and areca nut

    Novel Azo-Stilbene and Pyridine-Amine Hybrid Multifunctional Molecules to Target Metal Mediated Neurotoxicity and Amyloid-β Aggregation in Alzheimer’s disease

    No full text
    Neurodegenerative diseases such as Alzheimer’s diseases (AD) are associated with progressive neuronal cell death and a common correlation is aberrant protein misfolding and aggregation of the Aβ peptide. Transition metal ions (Cu, Fe and Zn) have been shown to promote aggregation and oxidative stress through formation of Aβ-metal complexes. In this context, integrating molecular scaffolds rationally is used here to generate multifunctional molecules as modulators for metal-induced abnormalities. This work encompasses two novel compounds (HL1 and HL2), the rationale behind the design, their synthesis, characterization and metal chelation ability [Cu(II) and Zn(II)]. The molecular frameworks of the designed compounds consist of stilbene as an Aβ interacting moiety; whereas N,N,O and N,N,N,O donor atoms are linked to generate the metal chelation moiety. Further, we went on exploring their multifunctionality w.r.t. to (i) their metal chelating capacities (ii) their utility to modulate the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) scavenge free radicals, (iv) inhibit the activity of acetylcholinesterase and (v) cytotoxicity. Moreover, the compounds were able to sequester Cu2+ from the Aβ-Cu complex and thus disrupt the redox cycle. Molecular docking studies were also performed with Aβ and acetylcholinesterase enzyme. Overall, the studies presented here qualify these molecules as promising anti-Alzheimer’s candidates

    ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum

    No full text
    We present a tyrosinase-conjugated zinc oxide-reduced graphene oxide (Tyr/ZnO-rGO) nanocomposite system as a biosensing test-bed for rapid and sensitive detection of dopamine (DA). The bioelectrodes (Tyr/ZnO-rGO/ITO) were designed by covalently immobilizing tyrosinase enzyme on spin-coated films of ZnO-rGO nanocomposite prepared via self-assembly approach. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed fast electron transfer kinetics of ZnO-rGO/ITO electrode. The response studies of the Tyr/ZnO-rGO/ITO bioelectrode revealed ultrafast (0.34 +/- 0.09 s) detection of DA in a wide linear dynamic range of 0.1-1500 pM. The significant performance of the biosensor in terms of low detection limit (8.75 +/- 0.64 pM) and high sensitivity (39.56 +/- 0.41 mu A nM(-1)) values is attributed to the fast and unhindered electron transfer mechanism of ZnO-rGO matrix having low electrochemical band gap. The nanoplatform exhibited high selectivity toward DA in human sera, and remained stable up to 3 months at 4 degrees C, representing its suitability for clinical applications

    DataSheet_1_PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival.pdf

    No full text
    Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.</p

    PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival

    No full text
    Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma\it Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that Tb\it TbPEX1 can bind to Tb\it TbPEX6. Endogenously tagged Tb\it TbPEX1 localizes to glycosomes in the T. brucei\textit {T. brucei} parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors Tb\it TbPEX5 and Tb\it TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated Tb\it TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional Tb\it TbPEX1-Tb\it TbPEX6 complex

    Green synthesized silver nanoparticles of Terminalia bellirica leaves extract: synthesis, characterization, in-silico studies, and antimalarial activity

    No full text
    AbstractMalaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between −9.93 and −11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria
    corecore