9 research outputs found

    A Review of Studies Evaluating Insecticide Barrier Treatments for Mosquito Control From 1944 to 2018

    Get PDF
    Background and Purpose: Barrier insecticide treatments have a long history in mosquito control programs but have been used more frequently in the United States in recent years for control of invasive “backyard� species (eg, Aedes albopictus) and increases in incidence of vector-borne diseases (eg, Zika). Methods: We reviewed the published literature for studies investigating barrier treatments for mosquito control during the last 74 years (1944-2018). We searched databases such as PubMed, Web of Science, and Google Scholar to retrieve worldwide literature on barrier treatments. Results: Forty-four studies that evaluated 20 active ingredients (AIs) and 21 formulated products against multiple mosquito species are included. Insecticides investigated for efficacy included organochlorines (dichlorodiphenyltrichloroethane [DDT], β-hexachlorocyclohexane [BHC]), organophosphates (malathion), and pyrethroids (bifenthrin, deltamethrin, permethrin, lambda-cyhalothrin) as AIs. Study design varied with multiple methods used to evaluate effectiveness of barrier treatments. Barrier treatments were effective at lowering mosquito populations although there was variation between studies and for different mosquito species. Factors other than AI, such as exposure to rainfall and application equipment used, also influenced control efficacy. Conclusions: Many of the basic questions on the effectiveness of barrier insecticide applications have been answered, but several important details still must be investigated to improve precision and impact on vector-borne pathogen transmission. Recommendations are made to assist future evaluations of barrier treatments for mosquito control and to limit the potential development of insecticide resistance

    Susceptibilidade larval de duas populações de Aedes egypti a inseticidas químicos Larval susceptibility to chemical insecticides of two Aedes egypti populations

    No full text
    OBJETIVO: A susceptibilidade dos insetos tem sido um dos mais importantes aspectos a ser monitorados em programas de saúde pública que tratam do controle de vetores. O estudo objetiva avaliar a susceptibilidade de larvas de Aedes aegypti a inseticidas químicos em áreas sujeitas ou não a controle. MÉTODOS: Bioensaios foram realizados com concentração de diagnóstico e concentração múltipla, segundo padrão da Organização Mundial de Saúde para as coletas de larvas de Aedes aegypti, em uma área não sujeita -- Campinas, SP -- e em uma outra área sujeita -- Campo Grande, MS -- a tratamentos químicos de controle. RESULTADOS: Larvas de Aedes aegypti coletadas em Campinas indicaram resistência potencial à concentração-diagnóstico (CD) de 0,04 ppm do organofosforado temephos. O teste de concentração múltipla registrou sobrevivência de 24,5% à concentração de 0,0125 ppm. A susceptibilidade dessa mesma linhagem foi avaliada para o organofosforado fenitrothion (CD=0,08 ppm) e o piretróide cipermetrina (CD=0,01 ppm), resultando em valores normais para essas concentrações. Larvas de Ae. aegypti coletadas em Campo Grande mostraram susceptibilidade normal ao temephos (CD=0,04 ppm) e à cipermetrina (CD=0,01 ppm). Também foram estabelecidas as CL50 e as CL95 de cipermetrina 25 CE, cyfluthrin 5 CE, betacyfluthrin 1,25 SC e propoxur 20 CE para Ae. aegypti. Com base nos dados da linhagem-padrão Rockefeller, foram estimadas as razões de resistência de 2,9, 2,2, 2,4 e 1,3, respectivamente, pela CL50, e de 3,5, 2,6, 3,9 e 1,3 pela CL95. CONCLUSÃO: Os resultados reforçam a necessidade de avaliações prévias e monitoramento da efetividade dos inseticidas que devem ser usados em programas de controle de mosquitos.<br>OBJECTIVE: Insect susceptibility has been one of the most important aspects to be monitored in public health programs for vector control. The purpose of the study is to assess the susceptibility to chemical insecticides of Aedes aegypti larvae in both areas under vector control and no vector control. METHODS: World Health Organization standard bioassays for diagnostic concentration and multiple concentrations were performed in mosquito larvae collected in an area under no vector control (Campinas, SP) and an area under vector chemical control (Campo Grande, MS), in Brazil. RESULTS: Potential resistance to a diagnostic concentration of temephos (DC=0.04 ppm) was registered for an Ae. aegypti larval population collected in Campinas. Multiple concentration tests confirmed the larvae resistance, with 24.5% of them surviving at the 0.0125 ppm concentration. Bioassays with the organophosphate fenitrothion (DC=0.08 ppm) and pyrethroid cypermethrin (DC=0.01 ppm) in the same population revealed their susceptibility to these agents. Bioassays carried out in an Ae. aegypti larval population collected in Campo Grande showed their susceptibility to temephos (DC=0.04 ppm) and cypermethrin (DC=0.01 ppm). LC50 and LC95 for cypermethrin (CE25), cyfluthrin (CE5), betacyfluthrin (SC1.25) and propoxur (CE20) were determined for Ae. aegypti . Using the Rockefeller standard strain values, ratios of resistance were estimated: 2.9, 2.2, 2.4 and 1.3 for LC50 and 3.5, 2.6, 3.9 and 1.3 for LC95, respectively. CONCLUSION: The findings reinforce the need for routinely monitoring pesticide efficacy as a very important step in vector control management programs

    A meta-analysis comparing the sensitivity of bees to pesticides

    No full text
    The honey beeApis mellifera, the test species used in the current environmental risk assessment procedure, is generally considered as extremely sensitive to pesticides when compared to other bee species, although a quantitative approach for comparing the difference in sensitivity among bees has not yet been reported. A systematic review of the relevant literature on the topic followed by a meta-analysis has been performed. Both the contact and oral acute LD50and the chronic LC50reported in laboratory studies for as many substances as possible have been extracted from the papers in order to compare the sensitivity to pesticides of honey bees and other bee species (Apiformes). The sensitivity ratio R between the endpoint for the speciesa(A. mellifera) and the species s(bees other thanA. mellifera) was calculated for a total of 150 case studies including 19 bee species. A ratio higher than 1 indicated that the species s was more sensitive to pesticides than honey bees. The meta-analysis showed a high variability of sensitivity among bee species (Rfrom 0.001 to 2085.7), however, in approximately 95 % of the cases the sensitivity ratio was below 10. The effect of pesticides in domestic and wild bees is dependent on the intrinsic sensitivity of single bee species as well as their specific life cycle, nesting activity and foraging behaviour. Current data indicates a need for more comparative information between honey bees and non-Apisbees as well as separate pesticide risk assessment procedures for non-Apis bees

    Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review

    No full text
    corecore