459 research outputs found

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels

    Full text link
    In this work, we consider efficient maximum-likelihood decoding of linear block codes for small-to-moderate block lengths. The presented approach is a branch-and-bound algorithm using the cutting-plane approach of Zhang and Siegel (IEEE Trans. Inf. Theory, 2012) for obtaining lower bounds. We have compared our proposed algorithm to the state-of-the-art commercial integer program solver CPLEX, and for all considered codes our approach is faster for both low and high signal-to-noise ratios. For instance, for the benchmark (155,64) Tanner code our algorithm is more than 11 times as fast as CPLEX for an SNR of 1.0 dB on the additive white Gaussian noise channel. By a small modification, our algorithm can be used to calculate the minimum distance, which we have again verified to be much faster than using the CPLEX solver.Comment: Submitted to 2014 International Symposium on Information Theory. 5 Pages. Accepte

    Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes

    Full text link
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and CC-symmetric, and make a connection to finite graph covers of the 3D-TC factor graph. This connection is used to show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a finite-length minimum pseudoweight analysis for small cover degrees. Also, an explicit description of the fundamental cone of the 3D-TC polytope is given. Finally, we present an extensive numerical study of small-to-medium block length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the minimum distance dmind_{\rm min} and/or the stopping distance hminh_{\rm min} is high, the minimum pseudoweight (on the additive white Gaussian noise channel) is strictly smaller than both the dmind_{\rm min} and the hminh_{\rm min}, and 2) the minimum pseudoweight grows with the block length, at least for small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication

    Introduction to Mathematical Programming-Based Error-Correction Decoding

    Full text link
    Decoding error-correctiong codes by methods of mathematical optimization, most importantly linear programming, has become an important alternative approach to both algebraic and iterative decoding methods since its introduction by Feldman et al. At first celebrated mainly for its analytical powers, real-world applications of LP decoding are now within reach thanks to most recent research. This document gives an elaborate introduction into both mathematical optimization and coding theory as well as a review of the contributions by which these two areas have found common ground.Comment: LaTeX sources maintained here: https://github.com/supermihi/lpdintr

    Pseudocodewords of linear programming decoding of 3-dimensional turbo codes

    Get PDF
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs), recently introduced by Berrou et al.. Here, we consider binary 3D-TCs while the original work of Berrou et al. considered double-binary codes. We present a relaxed LP decoder for 3D-TCs, which is an adaptation of the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. The vertices of this relaxed polytope are the pseudocodewords. We show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we present a numerical study of small block length 3D-TCs, which shows that typically the minimum pseudoweight (on the additive white Gaussian noise (AWGN) channel) is smaller than both the minimum distance and the stopping distance. In particular, we performed an exhaustive search over all interleaver pairs in the 3D-TC (with input block length K = 128) based on quadratic permutation polynomials over integer rings with a quadratic inverse. The search shows that the best minimum AWGN pseudoweight is strictly smaller than the best minimum/stopping distance

    Peergruppenarbeit

    Get PDF
    In diesem Beitrag werde ich mich mit den Spezifika der Peergruppenarbeit beschäftigen. Unter diesem Begriff verstehen wir einen strukturierten Austausch in einer Gruppe von Lernenden, bei dem jeder Lernende die Möglichkeit bekommt, von der Kompetenz und der Erfahrung anderer Sprachlerner zu profitieren, um für sich selbst passende Lösungen zu finden. In der Peergruppenarbeit "beraten" Lernende unter der Leitung eines geschulten Moderators andere Lernende und werden somit als "Experten", mit ihren Kompetenzen und ihrer Erfahrung beim Lernen, ernst genommen. In der Fachliteratur finden sich für ähnliche Konzepte die unterschiedlichsten Bezeichnungen, wie Kooperative Beratung, Kollegiale Supervision, peer coaching und peer consultation

    Peergruppenarbeit

    Get PDF

    Untersuchungen über die lineären Differentialgleichungen der zweiten und dritten Ordnung

    Get PDF
    http://tartu.ester.ee/record=b1867935~S1*es
    corecore