369 research outputs found

    Insights into the nature of northwest-to-southeast aligned ionospheric wavefronts from contemporaneous Very Large Array and ionosondes observations

    Full text link
    The results of contemporaneous summer nighttime observations of midlatitude medium scale traveling ionospheric disturbances (MSTIDs) with the Very Large Array (VLA) in New Mexico and nearby ionosondes in Texas and Colorado are presented. Using 132, 20-minute observations, several instances of MSTIDs were detected, all having wavefronts aligned northwest to southeast and mostly propagating toward the southwest, consistent with previous studies of MSTIDs. However, some were also found to move toward the northeast. It was found that both classes of MSTIDs were only found when sporadic-E (Es) layers of moderate peak density (1.5<foEs<3 MHz) were present. Limited fbEs data from one ionosonde suggests that there was a significant amount of structure with the Es layers during observations when foEs>3 MHz that was not present when 1.5<foEs<3 MHz. No MSTIDs were observed either before midnight or when the F-region height was increasing at a relatively high rate, even when these Es layers were observed. Combining this result with AE indices which were relatively high at the time (an average of about 300 nT and maximum of nearly 700 nT), it is inferred that both the lack of MSTIDs and the increase in F-region height are due to substorm-induced electric fields. The northeastward-directed MSTIDs were strongest post-midnight during times when the F-region was observed to be collapsing relatively quickly. This implies that these two occurrences are related and likely both caused by rare shifts in F-region neutral wind direction from southwest to northwest.Comment: Accepted for publication in the Journal of Geophysical Researc

    Climatology of Mid-latitude Ionospheric Disturbances from the Very Large Array Low-frequency Sky Survey

    Full text link
    The results of a climatological study of ionospheric disturbances derived from observations of cosmic sources from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS) are presented. We have used the ionospheric corrections applied to the 74 MHz interferometric data within the VLSS imaging process to obtain fluctuation spectra for the total electron content (TEC) gradient on spatial scales from a few to hundreds of kilometers and temporal scales from less than one minute to nearly an hour. The observations sample nearly all times of day and all seasons. They also span latitudes and longitudes from 28 deg. N to 40 deg. N and 95 deg. W to 114 deg. W, respectively. We have binned and averaged the fluctuation spectra according to time of day, season, and geomagnetic (Kp index) and solar (F10.7) activity. These spectra provide a detailed, multi-scale account of seasonal and intraday variations in ionospheric activity with wavelike structures detected at wavelengths between about 35 and 250 km. In some cases, trends between spectral power and Kp index and/or F10.7 are also apparent. In addition, the VLSS observations allow for measurements of the turbulent power spectrum down to periods of 40 seconds (scales of ~0.4 km at the height of the E-region). While the level of turbulent activity does not appear to have a strong dependence on either Kp index or F10.7, it does appear to be more pronounced during the winter daytime, summer nighttime, and near dusk during the spring.Comment: accepted for publication in Radio Scienc

    Advanced spectral analysis of ionospheric waves observed with sparse arrays

    Get PDF
    This paper presents a case study from a single, 6 h observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330 MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal-to-noise ratio (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the GPS data when combining all available satellite/receiver pairs, which probe a larger physical area and likely have a wider variety of measurement errors than in the single-satellite case. In this instance, we found that the peak S/N of the detected waves was improved by more than an order of magnitude. The data products generated by the deconvolution procedure also allow for a reconstruction of the fluctuations as a two-dimensional waveform/phase screen that can be used to correct for their effects

    Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales

    Full text link
    Within a recently proposed classically conformal model, in which the generation of neutrino masses is linked to spontaneous scale symmetry breaking, we investigate the associated phase transition and find it to be of strong first order with a substantial amount of supercooling. Carefully taking into account the vacuum energy of the metastable minimum, we demonstrate that a significant fraction of the model's parameter space can be excluded simply because the phase transition cannot complete. We argue this to be a powerful consistency check applicable to general theories based on classical scale invariance. Finally, we show that all remaining parameter points predict a sizable gravitational wave signal, so that the model can be fully tested by future gravitational wave observatories. In particular, most of the parameter space can already be probed by the upcoming LIGO science run starting in early 2019.Comment: 16 pages, 6 figures; calculation of signal-to-noise ratio updated, references adde

    Type-I Seesaw as the Common Origin of Neutrino Mass, Baryon Asymmetry, and the Electroweak Scale

    Full text link
    The type-I seesaw represents one of the most popular extensions of the Standard Model. Previous studies of this model have mostly focused on its ability to explain neutrino oscillations as well as on the generation of the baryon asymmetry via leptogenesis. Recently, it has been pointed out that the type-I seesaw can also account for the origin of the electroweak scale due to heavy-neutrino threshold corrections to the Higgs potential. In this paper, we show for the first time that all of these features of the type-I seesaw are compatible with each other. Integrating out a set of heavy Majorana neutrinos results in small masses for the Standard Model neutrinos; baryogenesis is accomplished by resonant leptogenesis; and the Higgs mass is entirely induced by heavy-neutrino one-loop diagrams, provided that the tree-level Higgs potential satisfies scale-invariant boundary conditions in the ultraviolet. The viable parameter space is characterized by a heavy-neutrino mass scale roughly in the range 106.5â‹Ż7.010^{6.5\cdots7.0} GeV and a mass splitting among the nearly degenerate heavy-neutrino states up to a few TeV. Our findings have interesting implications for high-energy flavor models and low-energy neutrino observables. We conclude that the type-I seesaw sector might be the root cause behind the masses and cosmological abundances of all known particles. This statement might even extend to dark matter in the presence of a keV-scale sterile neutrino.Comment: 41 pages, 5 figures, matches version published in PR

    Observational prospects for gravitational waves from hidden or dark chiral phase transitions

    Full text link
    We study the gravitational wave (GW) signature of first-order chiral phase transitions (χ\chiPT) in strongly interacting hidden or dark sectors. We do so using several effective models in order to reliably capture the relevant non-perturbative dynamics. This approach allows us to explicitly calculate key quantities characterizing the χ\chiPT without having to resort to rough estimates. Most importantly, we find that the transition's inverse duration β\beta normalized to the Hubble parameter HH is at least two orders of magnitude larger than typically assumed in comparable scenarios, namely β/H≳O(104)\beta/H\gtrsim\mathcal{O}(10^4). The obtained GW spectra then suggest that signals from hidden χ\chiPTs occurring at around 100 MeV can be in reach of LISA, while DECIGO and BBO may detect a stochastic GW background associated with transitions between roughly 1 GeV and 10 TeV. Signatures of transitions at higher temperatures are found to be outside the range of any currently proposed experiment. Even though predictions from different effective models are qualitatively similar, we find that they may vary considerably from a quantitative point of view, which highlights the need for true first-principle calculations such as lattice simulations.Comment: 35 pages, 9 figures. Extended discussion and updated calculation of gravitational wave spectra, main results unchanged; references added; matches published versio

    High-precision Measurements of Ionospheric TEC Gradients with the Very Large Array VHF System

    Full text link
    We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) to demonstrate the capability of this instrument to study the ionosphere. This interferometer, and others like it, can observe ionospheric total electron content (TEC) fluctuations on a much wider range of scales than is possible with many other instruments. We have shown that with a bright source, the VLA can measure differential TEC values between pairs of antennas (delta-TEC) with an precision of 0.0003 TECU. Here, we detail the data reduction and processing techniques used to achieve this level of precision. In addition, we demonstrate techniques for exploiting these high-precision delta-TEC measurements to compute the TEC gradient observed by the array as well as small-scale fluctuations within the TEC gradient surface. A companion paper details specialized spectral analysis techniques used to characterize the properties of wave-like fluctuations within this data.Comment: accepted for publication in Radio Scienc

    The dependence of HII region properties on global and local surface brightness within galaxy discs

    Full text link
    Using B, R, and H-alpha images of roughly equal-sized samples of low surface brightness (LSB) and high surface brightness (HSB) galaxies (~40 galaxies apiece), we have explored the dependence of HII region properties on local and global disc surface brightness. We have done this by constructing co-added HII region luminosity functions (LFs) according to local and central disc surface brightness and fitting Schechter functions to these LFs. The results show that the shape of the HII region LF within LSB galaxies does not change noticeably as different limiting (i.e., mu>mu_lim) local surface brightness values are used. However, the LFs for HSB galaxies have larger values of L_* and are less steep at the faint-end than those of LSB galaxies for limiting B-band local surface brightness values as faint as mu_B,lim~23-24. Both the LFs and the data for individual HII regions show that luminous (log L>39 ergs/s) HII regions are much more common within HSB discs than within LSB discs, implying that the newly formed star clusters are also larger. Taking this into account along with the results of Monte Carlo simulations, the shapes of the LFs imply that the regions within LSB discs and those within the LSB areas of HSB discs are relatively old (~5 Myr) while the regions within HSB discs for mu_B<24 are significantly younger (<1 Myr). Since the majority of the LSB galaxies do not have noticeable spiral arms and the majority of the HSB galaxies do, this may indicate a transition within HSB discs from spiral arm-driven star formation to a more locally driven, possibly sporadic form of star formation at mu_B~24, a transition that does not appear to occur within LSB discs.Comment: Accepted to MNRA
    • …
    corecore