54 research outputs found

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The osteoinductive potential of printable, cell-laden hydrogel-ceramic composites.

    No full text
    Hydrogels used as injectables or in organ printing often lack the appropriate stimuli to direct osteogenic differentiation of embedded multipotent stromal cells (MSCs), resulting in limited bone formation in these matrices. Addition of calcium phosphate (CaP) particles to the printing mixture is hypothesized to overcome this drawback. In this study we have investigated the effect of CaP particles on the osteoinductive potential of cell-laden hydrogel-CaP composite matrices. To this end, apatitic nanoparticles have been included in Matrigel constructs where after the viability of embedded progenitor cells was assessed in vitro. In addition, the osteoinductive potential of cell-laden Matrigel containing apatitic nanoparticles was investigated in vivo and compared with composites containing osteoinductive biphasic calcium phosphate (BCP) microparticles after subcutaneous implantation in immunodeficient mice. Histological and immunohistochemical analysis of the tissue response as well as in vivo bone formation revealed that apatitic nanoparticles were osteoinductive and induced osteoclast activation, but without bone formation. The BCP particles were more effective in inducing elaborate bone formation at the ectopic location. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A: 2412-2420, 2012

    Inducibility or predestination?: Queries and concepts around drug-free remission in rheumatoid arthritis

    Get PDF
    Introduction: Drug-free remission (DFR) and its maintenance have been defined as the most desirable outcome for rheumatoid arthritis (RA) patients. DFR is linked to resolution of arthritis-related symptoms and restoration of normal functioning. However, there is currently no consensus if an optimal strategy, upon the initiation of treatment to the proper drugs withdrawal, is enough to induce it, or whether it is a predetermined condition related to patients’ intrinsic characteristics. Areas covered: This review focuses on two key concepts around DFR. First, we analyze patients’ intrinsic factors that may increase the chance of DFR, regardless of therapeutic choices. Second, we discuss on the evidence that it can be induced thanks to adequate, extrinsic disease management. Finally, we provide a glimpse into consequences of drugs discontinuation. Expert opinion: The early initiation of DMARD and the subsequent strict monitoring and drug adjustments are of primary importance to allow patients to achieve DFR, irrespective of initial treatment strategy. Once remission is obtained and maintained, it is possible to gradually taper and discontinue drugs with no dramatic consequences on the disease course. Among those who stop medication, ACPA-negative patients more often maintain the remission. Thus, DFR might depend on a combination of intrinsic and extrinsic factors
    corecore