2,346 research outputs found

    Optical Resonances in Reflectivity near Crystal Modes with Spatial Dispersion

    Full text link
    We study the effect of spatial dispersion of crystal modes on optical properties such as the reflectivity RR. As an example for isotropic media, we investigate the simplest model for phonons in ionic crystals and compare with previous results for highly anisotropic plasmons, which are now understood from a more general point of view. As a consequence of the wave vector dependence of the dielectric function small changes in the lineshape are predicted. Beyond that, if the frequency of minimal RR is near a pole of the dispersionless dielectric function, the relative amplitude of dips in RR with normal and anomalous dispersion differ significantly, if dissipation and disorder are low.Comment: 4 pages, 7 eps figures, minor change

    Optical Properties of Crystals with Spatial Dispersion: Josephson Plasma Resonance in Layered Superconductors

    Full text link
    We derive the transmission coefficient, T(ω)T(\omega), for grazing incidence of crystals with spatial dispersion accounting for the excitation of multiple modes with different wave vectors k{\bf k} for a given frequency ω\omega. The generalization of the Fresnel formulas contains the refraction indices of these modes as determined by the dielectric function ϵ(ω,k)\epsilon(\omega,{\bf k}). Near frequencies ωe\omega_e, where the group velocity vanishes, T(ω)T(\omega) depends also on an additional parameter determined by the crystal microstructure. The transmission TT is significantly suppressed, if one of the excited modes is decaying into the crystal. We derive these features microscopically for the Josephson plasma resonance in layered superconductors.Comment: 4 pages, 2 figures, epl.cls style file, minor change

    Simulating stellar winds in AMUSE

    Get PDF
    We present stellar_wind.py, a module that provides multiple methods of simulating stellar winds using smoothed particle hydrodynamics codes (SPH) within the astrophysical multipurpose software environment (AMUSE) framework. With the simple wind mode, we create SPH wind particles in a spherically symmetric shell. We inject the wind particles with a velocity equal to their terminal velocity. The accelerating wind mode is similar, but with this method particles can be injected with a lower initial velocity than the terminal velocity and they are accelerated away from the star according to an acceleration function. With the heating wind mode, SPH particles are created with zero initial velocity with respect to the star, but instead wind particles are given an internal energy based on the integrated mechanical luminosity of the star. This mode is designed to be used on longer timescales and larger spatial scales compared to the other two modes and assumes that the star is embedded in a gas cloud. For fast winds, we find that both the simple and accelerating mode can reproduce the desired velocity, density and temperature profiles. For slow winds, the simple wind mode is insufficient due to dominant hydrodynamical effects that change the wind velocities. The accelerating mode, with additional options to account for these hydrodynamical effects, can still reproduce the desired wind profiles. We test the heating mode by simulating both a normal wind and a supernova explosion of a single star in a uniform density medium. The stellar wind simulation results matches the analytical solution for an expanding wind bubble. The supernova simulation gives qualitatively correct results, but the simulated bubble expands faster than the analytical solution predicts. We conclude with an example of a triple star system which includes the colliding winds of all three stars.Comment: Accepted for publication in A&

    Spillover Effects of Mass Layoffs

    Get PDF
    Using administrative data on firms and workers in Germany, we quantify the spillover effects of mass layoffs. Our empirical strategy combines matching with an event study approach to trace employment and wages in regions hit by a mass layoff relative to suitable control regions. We find sizable and persistent negative spillover effects on the regional economy: regions, and especially firms producing in the same broad industry as the layoff plant, lose many more jobs than in the initial layoff. In contrast, negative employment effects on workers employed in the region at the time of the mass layoff are considerably smaller. Strikingly, workers younger than 50 suffer no employment losses, as geographic mobility fully shields them from the decline in local employment opportunities

    Decoherence and Entanglement Dynamics in Fluctuating Fields

    Full text link
    We study pure phase damping of two qubits due to fluctuating fields. As frequently employed, decoherence is thus described in terms of random unitary (RU) dynamics, i.e., a convex mixture of unitary transformations. Based on a separation of the dynamics into an average Hamiltonian and a noise channel, we are able to analytically determine the evolution of both entanglement and purity. This enables us to characterize the dynamics in a concurrence-purity (CP) diagram: we find that RU phase damping dynamics sets constraints on accessible regions in the CP plane. We show that initial state and dynamics contribute to final entanglement independently.Comment: 10 pages, 5 figures, added minor changes in order to match published versio

    Inibição do crescimento de fungos do gênero Aspergillus produtores de ocratoxina a por extratos aquosos de erva-mate.

    Get PDF
    Editores técnicos: Marcílio José Thomazini, Elenice Fritzsons, Patrícia Raquel Silva, Guilherme Schnell e Schuhli, Denise Jeton Cardoso, Luziane Franciscon. EVINCI. Resumos

    Exchange interaction effects in inter-Landau level Auger scattering in a two-dimensional electron gas

    Full text link
    We consider the influence of spin effects on the inter-Landau level electron-electron scattering rate in a two-dimensional electron gas. Due to the exchange spin splitting, the Landau levels are not equidistant. This leads to the suppresion of Auger processes and a nonlinear dependence of the lifetime on the concentration of the excited electrons even at very low excitation levels.Comment: 10 pages, 3 figure
    corecore