
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/204054

Please be advised that this information was generated on 2019-07-08 and may be subject to

change.

http://hdl.handle.net/2066/204054

A&A 625, A85 (2019)
https://doi.org/10.1051/0004-6361/201732020
c© ESO 2019

Astronomy
&Astrophysics

Simulating stellar winds in AMUSE
Edwin van der Helm1, Martha I. Saladino2,1, Simon Portegies Zwart1, and Onno Pols2

1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
e-mail: edwin.vanderhelm@gmail.com

2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands

Received 30 September 2017 / Accepted 24 March 2019

ABSTRACT

Aims. We present stellar_wind.py, a module that provides multiple methods of simulating stellar winds using smoothed particle
hydrodynamics codes (SPH) within the astrophysical multipurpose software environment (amuse) framework.
Methods. The module currently includes three ways of simulating stellar winds: With the simple wind mode, we create SPH wind
particles in a spherically symmetric shell for which the inner boundary is located at the radius of the star. We inject the wind particles
with a velocity equal to their terminal velocity. The accelerating wind mode is similar, but with this method particles can be injected
with a lower initial velocity than the terminal velocity and they are accelerated away from the star according to an acceleration
function. With the heating wind mode, SPH particles are created with zero initial velocity with respect to the star, but instead wind
particles are given an internal energy based on the integrated mechanical luminosity of the star. This mode is designed to be used on
longer timescales and larger spatial scales compared to the other two modes and assumes that the star is embedded in a gas cloud.
Results. We present a number of tests and compare the results and performance of the different methods. For fast winds, we find
that both the simple and accelerating mode can reproduce the desired velocity, density and temperature profiles. For slow winds, the
simple wind mode is insufficient due to dominant hydrodynamical effects that change the wind velocities. The accelerating mode,
with additional options to account for these hydrodynamical effects, can still reproduce the desired wind profiles. We test the heating
mode by simulating both a normal wind and a supernova explosion of a single star in a uniform density medium. The stellar wind
simulation results matches the analytical solution for an expanding wind bubble. The supernova simulation gives qualitatively correct
results, but the simulated bubble expands faster than the analytical solution predicts. We conclude with an example of a triple star
system which includes the colliding winds of all three stars.

Key words. stars: winds, outflows – methods: numerical – hydrodynamics

1. Introduction

Stars lose mass through stellar winds during various stages of
their evolution (e.g. Meyer-Vernet 2007; Owocki et al. 2013;
Puls et al. 2015). These winds can affect the gas near the star,
creating lower density bubbles (Castor et al. 1975) and regulat-
ing star formation (Oey & Clarke 2009). If a binary companion
is present, accretion of the stellar wind material can also affect
the evolution of that companion (Boffin 2014).

The two most important parameters of the stellar wind are
the mass-loss rate, Ṁ, and the terminal wind velocity, v∞, which
determine the effect of the wind on the environment. Based
on these parameters, stellar winds can be broadly divided into
three categories (Owocki et al. 2013): (1) Cool main-sequence
stars like the Sun have winds with very low mass-loss rates
(Ṁ∼10−14 M� yr−1) that are thermally or gas pressure driven.
(2) Cool giants and super giants have slow (v∞∼5−30 km s−1)
high mass-loss rate (Ṁ∼10−7−10−5 M� yr−1) winds driven
mainly by radiation pressure on dust (Höfner 2015). (3) Hot
luminous stars have fast (v∞∼200−3000 km s−1) high mass-
loss rate (Ṁ∼10−7−10−5 M� yr−1) line driven winds (Puls et al.
2009). The second and third category have the highest kinetic
output and therefore have the most pronounced effect on the stel-
lar environment (not including cumulative effects).

To simulate stellar winds in detail, a combination of hydro-
dynamics, radiative transfer, dust formation and chemical abun-
dances is required. Such simulations have been done for many

years although they are extremely computationally expensive.
In most cases simulations are limited to 1D or 2D models (e.g.
Owocki et al. 1988; Blondin et al. 1990; Kudritzki & Puls 2000;
Boffin 2014). To investigate the net effect of the stellar wind
on the environment, it is often sufficient to simulate the stel-
lar wind using only hydrodynamics (Theuns & Jorissen 1993;
Cuadra et al. 2006; Mohamed et al. 2012). For larger scale sim-
ulations, stellar wind feedback is often included using a sub-
grid model as it can influence star formation and launch galactic
winds (e.g. Agertz et al. 2013; Muratov et al. 2015).

For all these simulations, the astrophysical multipur-
pose software environment (amuse1; Portegies Zwart et al.
2013, 2018; Pelupessy et al. 2013; van Elteren et al. 2014;
Portegies Zwart & McMillan 2018) can be useful. It provides a
uniform interface for many types of simulations with a large and
growing set of simulation codes. The consistent python inter-
face makes it possible to quickly set up a scientific simula-
tion and easily exchange different parts of these simulations.
While stellar winds have been simulated before using amuse (e.g.
Pelupessy & Portegies Zwart 2012), a consistent and properly
tested module was still missing.

The stellar_wind.py code presented in this paper can be
combined with the smoothed particle hydrodynamics (SPH),
N-body, stellar evolution and (with some additional work)

1 amusecode.org

Article published by EDP Sciences A85, page 1 of 15

https://doi.org/10.1051/0004-6361/201732020
https://www.aanda.org
http://amusecode.org
http://www.edpsciences.org

A&A 625, A85 (2019)

radiative transfer codes that are already available. We describe
the stellar_wind.py code and explain the different modes in
which it can be used (Sect. 2). In Sect. 3 we present a series of
tests in which we compare the results from the different modes
with theoretical expectations and previous work. We conclude
in Sect. 4 with an exposition of some ongoing research projects
using this code and ideas for further use.

2. Methods

The goal of stellar_wind.py is to create gas particles that repre-
sent the stellar wind from one or more stars. The code requires
a number of stars, represented by amuse particles2, with stellar
properties that can be derived from observations or stellar evolu-
tion simulations. Using this, SPH particles are created with the
appropriate wind properties in an initially spherically symmetric
shell with inner boundary at the radius of the star. The num-
ber of SPH particles is computed according to the mass-loss rate
associated with the star undergoing mass loss and the predefined
SPH particle mass, MSPH. These particles can be added to any
SPH code in amuse which simulates the hydrodynamics of the
wind.

Creating the SPH particles is only one step in the simulations
for which stellar_wind.py is used. Following the goal of the
amuse framework, the other parts of the simulations are handled
by specialized interchangeable codes. For the hydrodynamics,
SPH codes such as fi (Pelupessy 2005) and gadget2 (Springel
2005) can be used. In many applications, the stars move, for
which a large number of N-body codes are available. To cou-
ple the stellar dynamics to the hydrodynamics gravitationally,
bridge (Fujii et al. 2007) is available. The stellar properties on
which the wind is based will generally be calculated using a stel-
lar evolution code. Both parametrized (e.g. Hurley et al. 2000)
and Henyey type (e.g. Paxton et al. 2011) stellar evolution codes
are available in amuse. Any or all of these codes can be combined
with stellar_wind.py to set up a wide variety of simulations (see
Sect. 3). For more information about the codes available within
amuse and examples of how to couple them, we refer the reader
to Portegies Zwart & McMillan (2018).

2.1. Calculating stellar wind properties

To simulate the stellar winds, the stellar parameters (mass,
radius, temperature and position) and wind parameters (mass-
loss rate, initial and terminal wind velocity) are required. All
these parameters can simply be set directly, however some of
them can be derived directly from stellar evolution codes avail-
able in amuse.

The stellar_wind.py module includes user-friendly routines
to derive some of the stellar parameters such as stellar mass,
mass-loss rate, stellar radius and effective temperature from one
of the stellar evolution codes within amuse. However, the termi-
nal wind velocity, v∞, is not calculated by any code currently
in amuse. Determining v∞ requires detailed and computationally
expensive stellar wind simulations which include radiative trans-
fer. For this reason, in order to compute the terminal velocities of
hot stars, we provide within stellar_wind.py a formula that has
been fitted to observations of hot stars (Kudritzki & Puls 2000),
and which, they claim, is valid for these stars within 20%. The

2 A particle set is the fundamental data structure in amuse. It is an
array of particles (stars, SPH particles etc) which contain information
to control the data. Each element (particle) of the particle set has certain
attributes, such as mass, position, velocity, etc.

terminal velocity of the wind is given by:

v∞ = C(T∗)vphesc,

where,

C(T∗) =

1 T∗ ≤ 10 000 K,
1.4 10 000 K < T∗ < 21 000 K,
2.65 T∗ ≥ 21 000 K,

vphesc =
√

2g∗R∗ (1 − Γ),

g∗ =
GM∗

R2
∗

,

Γ = 7.66 × 10−5σe
L∗/L�
M∗/M�

,

σe = 0.398
1 + IHeY
1 + 4Y

, (1)

where vphesc is the photospheric escape velocity (similar to the
escape velocity vesc with a correction term for Thomson scat-
tering), G is the gravitational constant, M∗, R∗, L∗ and T∗ are
the mass, radius, luminosity and effective temperature of the star
respectively, Γ is the ratio of radiative Thomson acceleration to
gravitational acceleration, σe is the Thomson absorption coef-
ficient, Y is the Helium fraction and IHe is the number of elec-
trons per Helium nucleus (in this paper we use default values of
IHe = 2 and Y = 0.25). For cooler stars, v∞ ≈ vphesc and this
formula is still applicable (Kudritzki, priv. comm.).

2.2. Simple wind

Within stellar_wind.py, there are currently three wind modes
available. The simplest mode creates a spherical shell of particles
around the star with radial velocity, v(r) = v∞ and initial temper-
ature equal to the effective temperature of the star. While this
may sound simplistic, a similar setup has been used effectively
for a number of scientific problems (e.g. Mohamed et al. 2012)
and it serves as a starting point for the two other modes described
in Sects. 2.3 and 2.4. When the gravitational attraction of the star
on the wind is included in the simulation, however, this will not
result in the desired terminal wind velocity. We therefore release
the wind with a larger velocity v(r) =

√
v∞2 + vesc(r)2 where

vesc(r) =
√

2GM∗/r is the local escape velocity at the initial par-
ticle radius, r. We calculate this new velocity for each particle
because vesc(r) can vary within the thin shell in which we create
the particles.

We set the outer radius (rmax) of the shell of new particles
at the radius that the innermost part of the previously released
shell (R∗) should have reached in the elapsed simulation time δt
(see Appendix A.1). We scale the particle positions within the
shell to follow the density profile matching the velocity profile
as described in Appendix A.2.

2.2.1. SPH and initial distributions

SPH is a method to solve the dynamics of a fluid by approxi-
mating it with a set of discrete particles (Monaghan 1992). Each
particle has both a mass and a density, where the density is cal-
culated using the distance to, and mass of, other particles that are
nearby. To determine which other particles are taken into account
(how nearby they have to be) a kernel function3 and a particle
smoothing length (h) are used. In all modes of stellar_wind.py,

3 In the SPH code used in this paper we use the spline kernel.

A85, page 2 of 15

E. van der Helm et al.: Simulating stellar winds in AMUSE

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

y
(R
∗)

−3 −2 −1 0 1 2 3

x (R∗)

−3

−2

−1

0

1

2

3

y
(R
∗)

Fig. 1. Example of the initial positions of newly created particles using
a random (top) and grid (bottom) distribution. A shell of particles was
created between 1 and 3 stellar radii (R∗) and the x and y positions of
a thin slice (|z| < 0.05 R∗) are shown. The positions are scaled to match
the given density profile (see Appendix A). Note that this is merely an
illustration of the difference between random and grid initial distribu-
tions. In real simulations, the shells would generally be much thinner.

the SPH particle mass is required to be fixed and the same for
each particle. The smoothing length, h, is set adaptively by fix-
ing the number of neighbouring particles that fall within one h
(e.g. see Pelupessy 2005).

Creating an initial distribution of SPH particle positions is
not trivial (e.g. Diehl et al. 2015). Randomly distributed posi-
tions are clumpy which can introduce shot noise that can affect
the entire simulation. A better alternative is to have more regu-
lar spaces between particles, for instance a distribution that fol-
lows a grid. However, a regular grid tends to introduce preferred
directions in the simulation that can affect the overall results.
To solve this, it is common to start with either a random or
grid distribution and let the system evolve (relax) to a steady
state where the positions are regularly spaced without preferred
directions (for example a “glass” initial condition, White 1996;
Wang & White 2007). While some form of relaxation is

preferred for simulations where all particles are created at once,
for continuous particle creation like we describe here, this is not
generally required.

In stellar_wind.py we implement two methods in which
wind particles can be initially distributed. One is a random dis-
tribution and the second follows a uniform grid. We present an
example of both in Fig. 1. The random initial distribution (top
panel) is available so that users can investigate if it has advan-
tages for their simulations. In this case, a shell with uniform
density is created and then the radii are scaled to ensure the cor-
rect density profile. In the other option we have included (bot-
tom panel), each new shell is created by cutting it out from a
cube with positions following a uniform grid. The number of
particles in this shell is generally not exactly the desired num-
ber of particles, Ndesired = δt · Ṁ/MSPH. We therefore remove a
number of randomly selected particles from the grid (typically
∼30%) to ensure the correct number of SPH particles. The grid
can be randomly rotated each time a new shell is generated to
avoid introducing preferred directions into the resulting wind.
The positions of the particles are also radially scaled to ensure
that the desired density profile is achieved. This is the cause of
the curved appearance in the grid in Fig. 1.

There are many more ways to create initial particle distri-
butions. A good overview of the different methods and their
advantages can be found in Diehl et al. (2015). Our method is
a mix between the “stretched lattice” and the “shell” methods
described there. The reason we do not use the more advanced
methods described there is that they would require some form of
computationally expensive relaxation for every new shell. This
is a common issue with continuous particle creation methods. If
the current methods are found to be unsatisfactory for a specific
simulation, the code is set up in a modular way so adding a new
particle distribution method is relatively easy. The uniform grid
with random rotation is the default option used throughout this
paper. However, due to the small number of particles in a single
shell, the difference between this option and a random distribu-
tion is negligible for all the tests in Sect. 3.

2.3. Accelerating wind

Near the surface of the star, usually within a few stellar radii, the
wind is accelerated to the terminal wind velocity. In the acceler-
ating wind mode, the wind particles are created in the same way
as in the simple wind mode, but with a lower velocity, v < v∞.
All particles near the star are artificially accelerated in such a
way that the wind follows a predefined velocity profile.

The artificial acceleration is implemented using bridge
(Fujii et al. 2007). Originally, bridge was designed to cou-
ple multiple gravitational codes. In this method, each code is
evolved separately for a short, predefined timestep4. The mutual
gravitational effect is included by bridge using a kick-drift-
kick scheme (see e.g. Portegies Zwart & McMillan 2018). This
method can also be used to gravitationally couple a pure N-body
code with an SPH code, or to apply a gravitational potential to
the particles in one or more codes. In stellar_wind.py, we use
bridge by including an artificial potential near the star, and then
use the same kick-drift-kick scheme to ensure a smooth acceler-
ation of the wind particles.

In Fig. 2 and Table 1 we present the acceleration func-
tions (sometimes referred to as acceleration laws) currently

4 This should not be confused with the internal timesteps for each
code which may be variable, meaning particles have different timesteps
depending on conditions such as local particle density.

A85, page 3 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=1

A&A 625, A85 (2019)

0 1 2 3 4 5 6 7

r/R∗

0.0

0.2

0.4

0.6

0.8

1.0

v
/v
∞

constant velocity

rsquared

delayed rsquared

logistic

agb

beta law β = 0.8

beta law β = 2.0

Fig. 2. Radial velocity profiles for the wind acceleration functions cur-
rently available in stellar_wind.py. The formulae for these functions
can be found in Table 1. For the beta_law we show two curves that are
good fits for hot massive stars (β = 0.8) and cool giants (β = 2.0)
(Lamers & Cassinelli 1999). To illustrate the shape of the accelera-
tion curves, we have chosen v0 = 0.2 v∞, racc_start = 2 R∗ (for the
delayed_rsquared function), and rmid = 3 R∗ and s = α = 10 (for the
logistic and agb function).

Table 1. Overview of the acceleration functions currently available in
stellar_wind.py.

Name Equation Use

constant_velocity v(r) = v∞ Wide binaries

rsquared a(r) ∝
1
r2 Hot stars

delayed_rsquared a(r) ∝

0 r < racc_start
1
r2 r ≥ racc_start

Cool stars

logistic v(r) = v0 +
v∞ − v0

1 + e−s r−rmid
rmid

AGB winds

agb v(r) = v0 +
v∞ − v0

1 +
(

rmid
R∗

)α (
r

R∗

)−α AGB winds

beta_law v(r) = v0 + (v∞ − v0)
(
1 −

R∗
r

)β
Hot/cool stars

Notes. Either the acceleration (a) or the velocity (v) is given depending
on which is simpler. The corresponding v or a function can be derived
using a(r) = v(r) dv

dr and the known boundary conditions. Some functions
allow user defined parameters to affect the functions (e.g. racc_start, rmid,
β, etc.) The first three functions are rough approximations to the last
three functions. Their advantage is that they are computationally faster.

implemented in stellar_wind.py. For a given velocity (or accel-
eration) profile, all required quantities are calculated following
the equations in Appendix A. The constant velocity function is
similar to the simple wind mode in that when the wind parti-
cles are created, they already have the terminal velocity. How-
ever, as noted below, when used in the accelerating mode we
can add extra terms to compensate for the gravity of the star,
as well as the pressure of the gas on the wind. These extra
accelerating terms are added after the particles have been cre-
ated, which is not possible with the simple wind mode. In this
way, we guarantee the desired constant velocity profile. The
logistic and agb functions provide a fit to the time-averaged
behaviour of dynamical models of asymptotic giant branch
(AGB) winds from Nowotny et al. (2010). These winds exhibit

a specific acceleration zone, the location of which can be cho-
sen with the parameters rmid and either s or α (for the logistic
and agb function, respectively). These parameters determine the
center and the width of the acceleration zone. The default values
rmid = 3 and s = α = 10 are chosen to fit the dynamic models.
The beta_law function, which was derived using a combination
of observations and theoretical wind models, was taken from
Lamers & Cassinelli (1999) and Maciel (2014). The β param-
eter indicates the steepness of the acceleration curve and is
often derived from observations. The example values β = 0.8
and β = 2 are typical for hot and cool stars respectively. The
rsquared and delayed_rsquared functions can be used as rough
approximations to the wind profiles of hot stars and cool giants,
respectively. They have the advantage of being computation-
ally faster than the beta-law, agb and logistic functions. In the
delayed_rsquared model the parameter racc_start (with a default
value of 2) sets the lower boundary of the acceleration zone. The
initial velocity v0, which is used in all functions except for con-
stant_velocity, is of the order of a few km s−1 due to microturbu-
lence in the stellar atmosphere where the material is launched.
We note that low values of v0 result in high densities which
lead to slow simulations, so in many cases a higher value of
v0 can be used as an approximation. In addition to these prede-
fined functions, new user defined velocity functions can easily be
incorporated.

When the gravity of the star is included, an additional accel-
eration term can be added to compensate for it and ensure that
the wind particles follow the chosen velocity profile. The gas
pressure can also exert an acceleration on the wind. We therefore
provide the option to subtract the expected gas pressure accelera-
tion (see Appendix A.3) from the applied artificial acceleration.
If we do not include a hydrodynamical simulation of the stel-
lar interior, unphysical boundary effects near the surface of the
star can influence the wind evolution or even prevent the wind
from being launched. We therefore provide the option to create a
“staging shell” near the star, generally at least twice the thickness
of the newly created shells. Within this shell, the accelerations
are chosen in such a way that the desired velocities are enforced
regardless of the gas dynamics. This shell then provides a better
boundary condition for the rest of the simulation.

For many simulations using the simple and accelerating wind
we can start the simulation with a vacuum around the star into
which the wind particles are released. However, this can lead to
an extra acceleration at the outer radius as the vacuum does not
exert any pressure on the outermost particles. This can be prob-
lematic, especially for slow winds, where this spurious accel-
eration can significantly increase the velocities. We therefore
include a function in stellar_wind.py that creates an initial set
of SPH particles following the desired temperature, density and
velocity profiles up to a given radius. This function uses the same
initial grid distribution described in Sect. 2.2.1. Since the whole
grid is created at once, without random rotations between differ-
ent shells, this can introduce preferential directions. We advise
that any scientific measurements are started after all these parti-
cles have left the area of interest.

When particles are created, we ensure that they follow the
desired density profile by solving Eq. (A.9) for each particle.
For most acceleration functions, this equation has to be solved
numerically, which can severely slow down the simulation (see
Sect. 3.1). We therefore include the option to define a critical
timestep, tc. When new wind particles are created, δt, which
determines the thickness of the shell of new particles, is com-
pared to tc. If δt < tc it means that the new wind particles
have not reached the accelerating region yet. For this reason, the

A85, page 4 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=2

E. van der Helm et al.: Simulating stellar winds in AMUSE

acceleration function is approximated by the constant velocity
function, for which Eq. (A.9) is solved analytically. This approx-
imation is only valid for acceleration functions for which the
velocity near the star is close to constant, like the logistic func-
tion, not for acceleration functions with a large acceleration near
the stellar surface, like the beta_law function (see Fig. 2).

2.4. Heating wind

The third wind mode is based on the method used in
Pelupessy & Portegies Zwart (2012) and is designed for use in
large scale simulations, e.g. embedded star clusters. For these
simulations, the main effect of the wind is that it adds mass
and energy to the surrounding gas, therefore this mode cannot
be used for a star in a vacuum. Studying the detailed kinemat-
ics of the wind near the star is not the goal of these simulations
and therefore a simpler approximation of the wind interaction is
used. The advantage of this approximate approach is that it can
be used at far lower resolution (longer timesteps and higher SPH
particle mass) which greatly speeds up the simulations. If parti-
cles were created with a high velocity, small timesteps would be
required to completely sample the particle trajectory and inter-
actions with other particles.

The basic idea of the heating wind mode is that new wind
particles do not have an initial velocity relative to the star.
Instead they have an internal energy, u, which corresponds
to the mechanical energy (Emech) of the accumulated wind,
defined as,

Emech =

∫ t1

t0
Lmech(t) dt,

Lmech(t) =
1
2

Ṁ(t)v∞(t)2, (2)

where Lmech is the instantaneous mechanical luminosity and
t0 and t1 are the previous and current wind release time
respectively. The integral is numerically approximated in
stellar_wind.py during the simulation. The internal energy of
the new particles is set to

u = ffb
Emech

∆M∗
, (3)

where ∆M∗ is the mass lost and ffb is the feedback efficiency
parameter that accounts for radiative losses. Typical values
for these parameters can be found in the examples shown in
Sects. 3.3 and 3.4.

As discussed in Pelupessy & Portegies Zwart (2012), this
method of creating particles with appropriate internal energy can
also be used to simulate a supernova. If a star goes supernova, the
calculated mechanical energy is ignored, and instead 1051 erg of
energy is divided over the newly created particles. It should be
noted that the injection of so much energy in the surrounding gas
will cause the gas to evolve very rapidly, which can lead to time-
stepping artefacts (e.g. Pelupessy & Portegies Zwart 2012). One
way to prevent this is to use a very small timestep (preliminary
tests suggest ∼10 yr) shortly after a supernova.

3. Application

To ensure that stellar_wind.py performs as expected, we run
test simulations with different initial conditions and wind modes.
In this section we present the results of these tests. The tests
in Sects. 3.1 and 3.2 are simulations of processes that happen

stellar_wind.py

N-body (Huayno)

create particles
gravity kicks

stellar position gravity kicks

SPH (FI)

Bridge + FastKick

acceleration

Fig. 3. Diagram of the amuse codes (boxes) and their relations (labelled
arrows). Dotted lines indicate optional codes that can be added depend-
ing on the astrophysical application.

close to the star. Therefore only the simple and accelerating wind
modes are applicable. The tests in Sects. 3.3 and 3.4 are large
scale simulations of the interaction between the stellar wind and
the gas in which the star is embedded. For this type of simulation
the heating wind mode is applicable. The final test in Sect. 3.5,
where we couple stellar dynamics, hydrodynamics and stellar
winds, shows the power of stellar_wind.py within amuse by
simulating the colliding winds from a stable triple star system.
The initial distribution of the wind particles is the one based on
a grid for all the models in these tests. The particular parameters
used are described accordingly in the following subsections.

The stellar_wind.py module is designed to couple different
parts of a simulation in amuse. Testing the code requires the use
of other simulation codes, which have their own parameters to
be set. Here we describe the general method and general param-
eters used in our test models. In Fig. 3 we present a flow diagram
to illustrate the codes and the relationships between them. Note
that the codes and coupling strategies used here are merely an
example and should be modified in order to be suitable for any
specific application. To simulate the gas we use the SPH code fi
with an adiabatic equation of state and artificial viscosity param-
eters α = 0.5 and β = 1.0 (following Lombardi et al. 1999).
Self-gravity of the gas is only included in the tests which do not
require periodic boundary conditions, i.e. those tests where the
simple or accelerating mode are used. For simulating the gravi-
tational attraction of the star on the gas we need bridge, which is
also used in the accelerating wind mode (Sect. 2.3). The bridge
code requires an additional code for calculating the gravitational
force. When we simulate only a single star that does not evolve
dynamically, we use fastkick5. When we simulate multiple stars
that evolve dynamically (Sect. 3.5), we use the N-body code
huayno (Pelupessy et al. 2012). For each simulation, we also
need to define a number of integration timescales, such as the
bridge timestep (tbr), the (maximum) internal timestep (tN-body)
of the SPH and N-body codes and the wind release timestep
(twind), as well as the end time (tend) of the simulation. The choice
of these timesteps depends on the problem and the type of sim-
ulation. For the bridge leap-frog algorithm to work, we should
set tbr ≥ tN-body and the wind code requires twind ≥ tbr. It is also
a good idea to ensure that larger timescales are integer multiples
of smaller timescales. For the simulations in this paper, we only

5 The fastkick code, developed by N. de Vries, is an unpublished gpu-
enabled code in amuse that can calculate the gravitational force of one
set of particles on another set of particles. It is ideal for the gravitational
coupling between particles in different codes via bridge.

A85, page 5 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=3

A&A 625, A85 (2019)

Table 2. Stellar and wind parameters used in the fast wind test.

Name Parameter Value

Mass-loss rate Ṁ 10−6 M� yr−1

Terminal wind velocity v∞ 700 km s−1

Initial wind velocity v0 100 km s−1

Stellar mass M∗ 20 M�
Stellar radius R∗ 30 R�
Stellar luminosity L∗ 100 000 L�
Stellar surface temperature T∗ 20 000 K
Escape velocity at R∗ vesc(R∗) → 504.5 km s−1

Wind timestep twind 0.02 days
End time tend 5 days
SPH particle mass MSPH 10−11 M�
Particles per shell Nshell → ∼5
Particles in simulation Ntot → ∼1378
Median smoothing length h → ∼32 R�

Notes. Derived parameters are indicated with an arrow (→). Since the
smoothing length is highly variable with extreme outliers, we include
the median value of all gas particles shown in Fig. 4.

define twind and choose twind = 2tbr = 4tN-body. For the hydro
simulation we also need to set the SPH particle mass (MSPH).

3.1. Fast winds

In this section we present the results of a set of simulations using
the simple and accelerating wind modes. We simulate the wind
from a single, hot, massive, luminous star, for which we present
the parameters in Table 2. Note that these values were not chosen
using a specific stellar model and this test should only be con-
sidered as an example of the use of stellar_wind.py. The initial
wind velocity, v0 = 100 km s−1, is based on numerical consid-
erations. As we shall see in Sect. 3.2, slow (subsonic6) winds
are more complex to simulate and for many applications using a
higher v0 is sufficient.

In Fig. 4 we show the velocity, density and temperature pro-
files for the simple wind mode and two accelerating functions:
the beta_law and logistic function. In all cases the velocity pro-
files follow the desired analytical velocity curve. For the simple
wind mode, the density and temperature profiles also follow the
desired curve, but with more scatter. For the accelerating wind
curves, we see that in regions with high acceleration the densi-
ties and temperatures in the simulation are too high. This is a
result of the low resolution in combination with the way densi-
ties are calculated in SPH, using a kernel function that “smears
out” these variables. We show in Fig. 5 that for a higher reso-
lution (smaller Mgas), the desired density and temperature curve
are recovered. Note that the logistic acceleration function is not
a good representation for the velocity profile of a hot massive
luminous star. This example was chosen to illustrate the discrep-
ancies that can potentially occur. For any scientific application
of this code, a detailed convergence test for the selected setup
will still be required.

In addition to being accurate, it is also important that a sim-
ulation code is fast. In Fig. 6 we present the time spent in differ-
ent parts of the simulation code (tcode) divided by the total cpu

6 If the wind speed near the star is lower than the local sound speed, the
wind is called subsonic. On the other hand if the wind speed is higher
than the local sound speed, i.e. past the “sonic point”, the wind is called
supersonic.

Fig. 4. Analytical and simulated velocity (v), density (ρ) and tempera-
ture (T) as a function of radius (r) for the fast wind test. The results are
from simulations using the simple wind mode (top) and the accelerat-
ing wind mode (bottom). The stellar and wind parameters can be found
it Table 2. To calculate the analytical temperature profile, we assume
adiabatic expansion.

(or wall-clock) time (ttot) as a function of resolution7. In the top
panel we see that when using the simple wind mode, the time
spent in the stellar_wind.py code is less than 1% when using
more than ∼104 particles. Most of the simulation time is there-
fore spent in the SPH code itself, which is what we want. When
we use the accelerating wind mode however (middle panel), the
particle creation becomes a major bottleneck because numeri-
cally solving Eq. (A.9) is slow. To speed up the simulation, we
have included the option to approximate the acceleration func-
tion with a constant velocity when particles are created near the
star by defining a critical timestep (tc, see Sect. 2.3). In the bot-
tom panel we see that by using this approximation, the time spent
in stellar_wind.py reduces to <1% for >104 particles.

7 These simulations where all performed on the same desktop com-
puter using a 4-core Intel Xeon E5507 CPU.

A85, page 6 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=4

E. van der Helm et al.: Simulating stellar winds in AMUSE

Fig. 5. Same as Fig. 4, but only for a simulation using the accelerating
wind mode with the logistic acceleration function. We have varied the
resolution by changing the SPH particle mass (MSPH) and through that
the number of particles in the simulation. We have added the smoothing
length, h, as a function of radius for each simulation, which is a measure
of the local spatial resolution.

3.2. Slow wind

For the slow wind test, we simulate the wind from a single,
cool, giant star, for which we present the parameters in Table 3.
The values of these parameters are not computed with a stellar
evolution code, but they correspond to typical values for AGB

0.0

0.2

0.4

0.6

0.8

1.0

t c
o
d
e
/t

to
t

simple wind

∼ 102 ∼ 103 ∼ 104 ∼ 105
N

0.0

0.2

0.4

0.6

0.8

t c
o
d
e
/t

to
t

accelerating wind

10−1310−1210−1110−10

MSPH (M�)

0.0

0.2

0.4

0.6

0.8

t c
o
d
e
/t

to
t

accelerating wind with critical timestep

wind (add particles)

wind (accelerate particles)

SPH

Fig. 6. Part of the simulation time used for the stellar_wind.py
code while creating new particles (circles) and accelerating them
(stars) compared to the time used by the SPH code (diagonal lines).
The three panels show results for simulations with the simple wind
mode (top), the accelerating wind mode with the logistic accelera-
tion function without a critical timestep (middle) and the accelerat-
ing wind mode with a critical time step (bottom). Marks along each
line denote separate simulation runs. At the top axis we give an
estimate of the number of SPH particles (N) actually used in the
simulation with the corresponding particle mass (MSPH). The remain-
ing simulation time (white space) was mostly spent on unoptimized
administrative tasks like saving snapshots and removing escaping
particles.

stars. Part of the stellar wind is subsonic and therefore hydro-
dynamical effects are no longer negligible, unlike in the fast
wind test.

In Fig. 7 we present the velocity profiles of simulations using
the simple wind mode and varying v∞ at t = 5 days. We have not
included the stellar gravity in these simulations, therefore the
escape speed is not a relevant factor. However, when the wind
speed is near or below the sound speed, the gas pressure gradient
dominates and affects the terminal wind velocity. For very low
wind speeds, this can cause wind particles to move inside the
star, which is unphysical. We therefore conclude that the simple
wind mode is not reliable for slow winds.

A85, page 7 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=5
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=6

A&A 625, A85 (2019)

Table 3. Stellar and wind parameters used in the slow wind test.

Name Parameter Value

Mass-loss rate Ṁ 5 × 10−7 M� yr−1

Terminal wind velocity v∞ 25 km s−1

Initial wind velocity v0 2 km s−1

Stellar mass M∗ 2 M�
Stellar radius R∗ 300 R�
Stellar luminosity L∗ 8000 L�
Stellar surface temperature T∗ 3000 K
Escape velocity at R∗ vesc(R∗) → 50.45 km s−1

Wind timestep twind 2 days
End time tend 2000 days
SPH particle mass MSPH 10−9 M�
Particles per shell Nshell → ∼5
Particles in simulation Ntot → ∼8476
Median smoothing length h → ∼159 R�

Notes. Derived parameters are indicated with an arrow (→). Since the
smoothing length is highly variable with extreme outliers, we include
the median value of all gas particles shown in Fig. 8.

In Fig. 8 we present the results of simulations using the
accelerating wind mode. In these simulations we have used the
staging shell option (Sect. 2.3) that enforces the correct particle
velocity for all SPH particles with radius r < 1.1 R∗. We have
also used the option to subtract the expected gas pressure accel-
eration from the acceleration to ensure that the particles follow
the desired velocity profile. To avoid spurious acceleration of
the outer particles, we start the simulation after initially creating
a sphere of particles following the desired velocity and density
profiles throughout the simulation area (up to r = 1500 R�).

For the constant, rsquared and beta_law velocity profiles,
the particles follow the desired velocity profiles. For the logis-
tic velocity profile, where particles are subsonic for a longer
time, the simulated velocity profile deviates from the desired
velocity profile in the subsonic region. However, the correc-
tions described above ensure that the resulting velocities after
particles pass the sonic point follow the desired velocity pro-
file. To see how this deviation will affect the results of simula-
tions where the subsonic region is of interest, we have compared
this velocity profile with detailed velocity profiles of AGB stars
(Nowotny et al. 2010). In these profiles, the velocities in the sub-
sonic region oscillate due to stellar pulsations and do not follow
the simple acceleration functions we have used here. We there-
fore advise caution when interpreting results of simulations in
the subsonic region.

Similar discrepancies in density and temperature as seen for
the fast wind test in Fig. 4 are also present for the slow wind
test in Fig. 8. In Fig. 9 we present the results of a resolution test
for the slow wind test. We see that the discrepancies in density
and temperature decrease with higher resolution, as expected.
The deviations in the velocity profile in the subsonic region also
decrease, although some differences are still present even at high
resolution.

3.3. Embedded star

For the embedded star test (Table 4), we take the hot, mas-
sive, luminous star from Sect. 3.1 and embed it in a constant
density medium. The stellar wind will heat the gas and cre-
ate a cavity around the star. This situation is quite common in

Fig. 7. Same as Fig. 4 but for the slow wind simulations using the simple
wind mode without gravity where we vary the wind velocity. We have
added the expected local sound speed (dotted line) for comparison.

embedded star clusters and it is what the heating wind mode
is designed for. The initial gas is distributed along a grid8 to
ensure a constant density and a divergence-free random Gaus-
sian velocity field following Bonnell et al. (2003). To ensure that
the medium is stable, we use periodic boundary conditions and
stop the simulation when the wind-blown bubble covers more
than half the simulation box. For the heating wind mode, the
outer radius for new wind particles (rwind) is set manually to
rwind = 0.01 pc and the feedback efficiency is set to ffb = 0.01
following Pelupessy & Portegies Zwart (2012).

In Fig. 10 we show the gas density when the bubble has
just started to form (t = 0.2 Myr) and when it has had time to
grow (t = 0.6 Myr). The stellar wind creates an approximately
spherical bubble of lower density as the gas is swept up in a
high density shell around it. To understand why the bubble is
not perfectly spherical, we note that the finite number of gas

8 As mentioned in Sect. 2.2.1, this can introduce preferential direc-
tions and a glass or other relaxed system should be considered for most
applications.

A85, page 8 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=7

E. van der Helm et al.: Simulating stellar winds in AMUSE

Fig. 8. Same as Fig. 7 but for the accelerating wind mode with four
different acceleration functions.

Table 4. Parameters used in the embedded star test.

Name Parameter Value

Gas density ρgas 10 and 100 M� pc−3

Wind timestep twind 2 × 104 yr
End time tend 106 yr
SPH particle mass MSPH 0.05 to 1 M�
Wind release radius rwind 0.01 pc
Feedback efficiency ffb 0.01
Particles per shell Nshell → 0 or 1
New particles in simulation Nnew → 5–100
Median smoothing length h → ∼0.2 pc

Notes. The stellar and wind parameters are the same as in Table 2.

particles cause small numerical fluctuations in the initial gas den-
sity. When we then introduce a small number of wind particles
with higher energy than the surrounding gas, these small fluc-
tuations grow into a larger asymmetry in the wind bubble. This
growth of small initial asymmetries was observed in SPH sim-
ulations of supernovae explosions (Rimoldi et al. 2016) where

Fig. 9. Same as Fig. 5 but for the slow wind test.

they found that if the injected energy is spread out over more
particles, the asymmetric effects diminish. If the asymmetry in
the wind bubbles would become a problem for specific simula-
tions, then the wind energy could be spread out in a similar way.

In Fig. 10 we have drawn a dashed line that shows the radius
where the mean density is highest (rρmax, see Appendix A.4 for
details). At the start of the simulation, this radius is undefined,
because the gas has a constant density. As the bubble grows and
gas is swept up in an approximately spherical shell, the radius
of maximum density matches the shell radius, which is what we

A85, page 9 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=8
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=9

A&A 625, A85 (2019)

−2

−1

0

1

y
(p

c)

t = 0.2 Myr

101 102

ρ (M�/pc3)

−2 −1 0 1 2

x (pc)

−2

−1

0

1

y
(p

c)

t = 0.6 Myr

Fig. 10. Gas density in the x − y plane after 0.2 Myr (top) and after
0.6 Myr (bottom) for the embedded star simulation with MSPH = 0.1 M�
and ρgas = 100 M� pc−3. The embedded star is positioned at the origin
(yellow dot) and the red dashed circle shows the radius with the largest
mean density.

plot as a function of time in Fig. 11. Note that rρmax is slightly
larger than the shell radius because of the asymmetry of the wind
bubble. We present this expansion for different values of MSPH
(different resolutions) and two different gas densities. Even when
the resolution is very low (MSPH = 1.0 M�), the heating wind
method still results in a dispersion of the gas cloud. The expan-
sion is faster for lower gas density, which is in agreement with
analytical solutions for the shell radius of an energy driven flow
in a constant density medium (Dyson 1984). However, the bub-
ble expansion starts later for simulations with a lower resolu-
tion. This delay corresponds to the time it takes for the star to
lose enough mass to create the first wind particle. For exam-
ple, if MSPH = 1.0 M� and Ṁ = 1 M�Myr−1, this delay is
1 Myr. In the bottom panel of Fig. 11, we show the shell expan-
sion starting at the moment of the first wind injection. We see
that lower resolution results in a faster expansion, caused by the
larger energy injected in a single SPH particle. The expansion

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t (Myr)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

r ρ
m

a
x

(p
c)

ρ = 10 M�/pc3

ρ = 100 M�/pc3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

t− Ṁ/MSPH (Myr)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

r ρ
m

a
x

(p
c)

MSPH = 1 M�
MSPH = .5 M�
MSPH = .1 M�
MSPH = .05 M�

analytic

Fig. 11. Radius with the highest mean gas density (rρmax) as a func-
tion of time, t for the embedded star simulations. Different colours
correspond to different resolutions resulting from different SPH parti-
cle masses (MSPH). Top panel: rρmax for all simulations as a function
of t. Lines with open circles correspond to simulations where the gas
density, ρgas = 10 M� pc−3 and lines with filled circles to simulations
with a gas density, ρgas = 100 M� pc−3. Bottom panel: simulations with
ρgas = 100 M� pc−3 and subtract Ṁ/MSPH (the time of the first SPH
particle creation) from t. The black solid line shows the analytical solu-
tion for the shell radius of an energy driven flow in a constant density
medium (Dyson 1984).

profile approaches the analytical solution for high resolution
(small MSPH). We therefore advise that the choice of MSPH be
based on the stellar mass-loss rate and the delay and expansion
profile that would be acceptable in the desired simulations.

3.4. Supernova

As discussed in Sect. 2.4, the heating wind mode can also be
used to simulate the effect of a supernova on the surrounding gas.
The supernova test (Table 5) is similar to the embedded star test
(Sect. 3.3). We start the simulation by evolving the star using the
stellar evolution code SeBa (Portegies Zwart & Verbunt 2012)
to a few timesteps (∼40 yr) before the star goes supernova

A85, page 10 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=10
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=11

E. van der Helm et al.: Simulating stellar winds in AMUSE

Table 5. Parameters used in the supernova test.

Name Parameter Value

Initial stellar mass MZAMS 20 M�
Stellar age T∗ 9.78 Myr
Gas density ρgas 10 M� pc−3

End time tend 2000 yr
SPH particle mass MSPH 0.01–1 M�
Wind timestep twind 20 yr
Wind release radius rwind 0.01 pc
Supernova energy ESN 1051 erg
Mass-loss ∆M∗ 12.95 M�
Feedback efficiency ffb 0.01

0.0 0.5 1.0 1.5 2.0 2.5

r (pc)

0

5

10

15

20

25

30

ρ
(M
�
/p

c3
)

t = 1000 yr

MSPH = 1 M�
MSPH = 0.1 M�
MSPH = 0.05 M�
MSPH = 0.01 M�

Sedov Taylor

Fig. 12. Mean gas density as a function of radius at time t = 1000 yr for
the supernova test at four resolutions (dashed lines). The analytical solu-
tion (solid black line), is the Sedov–Taylor solution for a self-similar
blast wave in a uniform medium (Taylor 1950; Sedov 1959).

(∼9.78 Myr). We place the star inside the uniform density gas
medium and use the option to derive the stellar wind param-
eters from the output of a stellar evolution calculation (see
Sect. 2.1). When this option is set, stellar_wind.py detects the
supernova and creates the particles with a combined mass of
12.95 M� and an energy of 1051 erg. After the supernova feed-
back is generated we trace the resulting blast wave. Similar to
the embedded star test, we get a sphere of high density mate-
rial moving away from the star, however, due to the higher
energy input, the radial velocity is higher. Using test simula-
tions, we have found that a timestep of twind = 20 yr is required
to avoid time-stepping artefacts with this high velocity (also see:
Pelupessy & Portegies Zwart 2012).

In Fig. 12 we present the radial mean density profile for sim-
ulations with four different particle masses. We find that for the
low resolution simulation (MSPH = 1 M�), the gas has moved
away from the star, but the shape of the shockfront, where the
density is highest, is only loosely defined. For the higher reso-
lution simulations, we do see the shape of the main shockfront
clearly, and the simulations agree on the radius of highest density
at t = 1000 yr. However, the radius of the shockfront does not
converge to the analytical solution. There is an increased den-
sity at r = 0 for the MSPH = 0.01 M� simulation. This feature is
present at some point for all high resolution simulations and is

0 250 500 750 1000 1250 1500 1750 2000

t (yr)

0.0

0.5

1.0

1.5

2.0

2.5

r ρ
m

a
x

(p
c)

MSPH = 0.5 M�
MSPH = 0.2 M�
MSPH = 0.1 M�
MSPH = 0.05 M�
MSPH = 0.01 M�

free expansion

Sedov Taylor

Fig. 13. Radius with the highest mean gas density (rρmax) as a function
of time for the supernova test. We include the analytical solution, which
is free expansion followed by the Sedov–Taylor solution.

Table 6. Stellar, wind and orbital parameters of the colliding wind triple
simulation.

Name Parameter Star 1 Star 2 Star 3

Stellar type WR5 O6 O9.5 Giant
Mass-loss rate Ṁ (M� yr−1) 1.8 × 10−5 10−6 10−6

Wind velocity v∞ (km s−1) 2000 1000 1000
Mass M∗ (M�) 12 20 30
Radius R∗ (R�) 2.2 10 50
Luminosity L∗ (L�) 2 × 105 1.4 × 105 5.5 × 104

Temperature T∗ (K) 7.1 × 104 4.5 × 104 3.9 × 104

Orbital period p 19.14 days 130 yr
Eccentricity e 0 0
Inclination i 0◦
Wind timestep twind 0.2 days
End time tend 190 days
Particle mass MSPH 10−11 M�

the result of a reverse density wave within the outgoing shock-
wave. These waves are an artefact of the hydrodynamical simu-
lation method used, but they are not an accurate representation of
the true physical process. They should not be confused with the
reverse shock that takes place in real supernova remnants. While
these density waves do subside after a few thousand years, the
density inside the supernova bubble shortly after the explosion
should not be considered correct.

The time evolution of the expansion of gas from a supernova
explosion is usually modelled in separate phases. The first phase
is a free expansion, where the ejected gas moves at an approxi-
mately constant velocity, sweeping up the gas in the interstellar
medium. After the mass of swept up gas is equal to the mass of
the originally expelled gas, the expansion can be approximated
as a pure adiabatic expansion, which is described by the self-
similar Sedov–Taylor solution. Only this last phase can be sim-
ulated with the heating wind mode of stellar_wind.py, because
the particles are given a high internal energy instead of an initial
velocity.

In Fig. 13 we present the time evolution of rρmax, which we
calculate in the same way as for the embedded star test. We

A85, page 11 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=12
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=13

A&A 625, A85 (2019)

49.4 49.2 49.0 48.8 48.6 48.4 48.2 48.0
x (AU)

7.6

7.4

7.2

7.0

6.8

6.6

6.4

6.2

y
(A

U)

106 107 108 109
(M /pc3)

60 40 20 0 20 40 60
x (AU)

60

40

20

0

20

40

60

y
(A

U)

103 104 105 106 107
(M /pc3)

49.4 49.2 49.0 48.8 48.6 48.4 48.2 48.0
x (AU)

7.6

7.4

7.2

7.0

6.8

6.6

6.4

6.2

y
(A

U)

60 40 20 0 20 40 60
x (AU)

60

40

20

0

20

40

60

y
(A

U)

0.0

0.5

1.0

1.5

2.0

2.5

T
(1

08
K)

49.4 49.2 49.0 48.8 48.6 48.4 48.2 48.0
x (AU)

7.6

7.4

7.2

7.0

6.8

6.6

6.4

6.2

y
(A

U)

60 40 20 0 20 40 60
x (AU)

60

40

20

0

20

40

60

y
(A

U)

0

250

500

750

1000

1250

1500

1750

2000
v

(k
m

/s
)

Fig. 14. Gas density (top), temperature (center) and velocity (bottom) in the orbital plane of the colliding wind triple simulation for the inner (left)
and outer (right) binary. The sizes of the stars (yellow circles) in the plots on the right hand panels were multiplied by 10 to make them visible.
Left hand panels: Wolf-Rayet star (star 1, see Table 6) can be seen on the right and star 2 on the left. Right hand panels: the short period binary
(star 1 and 2), can be seen on the left and the O9.5 supergiant (star 3) on the right. In the bottom plots, the arrows indicate the wind direction
and larger arrows correspond to higher wind velocities, however, the colors provide a more precise indication of the velocities. Note that the two
density plots have separate color bars, while the temperature and velocity plots each share a single color bar.

A85, page 12 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732020&pdf_id=14

E. van der Helm et al.: Simulating stellar winds in AMUSE

Table 7. Overview of the modes in stellar_wind.py and their suggested application domains.

Mode Section Description Application

Simple 2.2 Creates particles with a radial
velocity given by the desired termi-
nal wind velocity.

Detailed wind interaction simula-
tions well outside the acceleration
zone and past the sonic point.

Accelerating 2.3 Similar to simple wind, but also
accelerate particles near the star.

Detailed wind simulation near or
inside the acceleration zone and
near the sonic point.

Heating 2.4 Does not give new particles a radial
velocity, but instead adds internal
energy to the particles.

Large scale, low resolution simula-
tions of wind from embedded stars,
including the effect of a supernova.

now compare it to the analytical solution for the two phases of a
supernova blast wave, the free expansion and the Sedov–Taylor
solution. We find that the simulations do approach the analyt-
ical solution and roughly follow the same shape, but even the
highest resolution simulation expands faster than the analytical
solution. We do not model the initial free expansion phase and
shockwaves are in general difficult to simulate using SPH (e.g.
Hubber et al. 2013). Differences with the analytical solution are
therefore to be expected and this type of simulation should be
interpreted with care.

Given these caveats, both the use of SPH and the chosen
approximations may not seem to be the ideal choice for sim-
ulating a supernova explosion in a gaseous medium. Indeed,
depending on the goal of the simulations, other available meth-
ods could be more suitable, for example using a grid based sim-
ulation code (e.g. Rogers & Pittard 2013) or including magnetic
fields (e.g. Körtgen et al. 2016). However, the method presented
here has two main advantages: (1) It is simple and scales well to
very low SPH resolution, making it computationally faster than
more detailed simulation techniques. (2) The use of SPH com-
bined with bridge allows easy gravitational coupling between
the gas and the stars. We can therefore use this code to run large
scale simulations of multiple supernova explosions in a gaseous
medium also containing many dynamic stars. These advantages
allow us to model a very turbulent stage in the evolution of
embedded star clusters.

3.5. Colliding wind triple

The previous tests were for single stars and therefore the geom-
etry of the outflow was not modified by the environment. In
this test (Table 6), we simulate a triple star system where all
three stars have a strong stellar wind. The system we sim-
ulate is loosely based9 on WR48 (θ Muscae), which is a
triple system (Sugawara et al. 2008) consisting of a WC5/WC6
+ O6/O7V binary with a short period (∼19 days, Hill et al.
2002) and an O9.5/B0Iab star in a longer orbit (>130 yr,
Dougherty & Williams 2000) around that binary. For this sim-
ulation we have used similar numerical parameters to the fast
wind test in Sect. 3.1.

In Fig. 14 we show the gas density, temperature and veloc-
ity at the end of the simulation. Due to the large difference
between the inner and outer orbital periods, the system appears
similar to a normal colliding wind binary, which was assumed

9 We are aware that the chosen values do not match the most up-
to-date observations of the WR48 system. However, the goal of this
investigation is to demonstrate the use of the stellar_wind.py code, not
to explain the observed system.

in previous models of WR48 (Hill et al. 2002). However, the
orbital motion of the inner binary creates a spiral pattern in
the density and temperature distribution, which is very differ-
ent from the wind from a single star. This spiral pattern cre-
ates high and low temperature regions in the shockfront where
the wind from the inner binary collides with the wind from the
third star. The observations of this shockfront can therefore be
quite different from observations of a normal colliding wind
binary.

It is important to note that this simulation is just an exam-
ple of what is possible with the stellar_wind.py module and
not an in-depth investigation into wind interactions in a triple
star systems. For example, in the middle panels of Fig. 14 we
can see that the temperature of the wind from the inner binary
is extremely high (>108 K). These high temperatures are unre-
alistic because in reality the gas would cool, which is not taken
into account in this simulation. When using this code for sim-
ulations that are to be compared with observations, gas cool-
ing and a convergence test of the shockfront regions should be
performed.

4. Discussion and conclusion

We have presented and tested the stellar_wind.py module,
which can be used to simulate stellar winds within the amuse
framework by creating (and accelerating) SPH particles. The
code includes three different modes: the simple mode, the accel-
erating mode and the heating mode (Table 7). We have tested
the code for single stars with fast and slow winds, as well as
an embedded star with both wind and a supernova explosion.
For both fast and slow winds, the simple and accelerating wind
modes perform well, although subsonic winds must be simulated
with the latter. For the embedded star, the heating wind mode
creates a wind bubble, even at low resolution; with higher res-
olution the expansion profile approaches the analytical solution.
After a supernova, the heating wind mode creates an expanding
shell with velocities similar to the analytical solution if small
enough timesteps are used. Finally we have shown an example
of how this module can be used to tackle new problems, by sim-
ulating a colliding wind triple system.

The stellar_wind.py module can be used for many differ-
ent simulations that involve stellar winds and several projects
are already in progress. The simple wind mode has been used to
simulate the accretion of gas from the winds of the S-stars onto
the super-massive black hole Sgr A∗ (Lützgendorf et al. 2016).
The accelerating wind mode is used to simulate the accretion
of the wind from a red giant onto a close binary companion
(Saladino et al. 2018). The heating wind mode is part of a larger

A85, page 13 of 15

A&A 625, A85 (2019)

simulation to investigate the evolution of the Arches cluster (van
der Helm et al., in prep.). In Table 7 we give an overview of the
application of the different modes. The code is publicly available
in the amuse framework.

There are many other types of simulations involving stel-
lar winds that could be done with the amuse framework and
corresponding modes could be added to stellar_wind.py. It
would be possible to add the mass and corresponding energy
lost by stars to existing SPH particles. This would make it pos-
sible to run simulations of embedded stars with even lower
resolution (higher SPH particle mass). However, this would
result in unequal mass particles, which requires advanced treat-
ment in the SPH codes. In the other extreme, since radiative
transfer codes are available in amuse, it would be possible
to add a mode that solves the radiative hydrodynamics of
the wind and this would make detailed stellar wind simula-
tions possible. In fact, such coupled simulations have been per-
formed with amuse already (Wall et al. 2017, Clementel, priv.
comm.).

Acknowledgements. We thank N. Lützgendorf for testing and improving the
simple wind mode, R. P. Kudritzki for his advice on the v∞ scaling law and
F. I. Pelupessi for providing his code for the heating wind mode. This work was
supported by the Netherlands Research Council NWO.

References
Agertz, O., Kravtsov, A. V., Leitner, S. N., & Gnedin, N. Y. 2013, ApJ, 770, 25
Blondin, J. M., Kallman, T. R., Fryxell, B. A., & Taam, R. E. 1990, ApJ, 356,

591
Boffin, H. M. J. 2014, ASSL, 413, 153
Bonnell, I. A., Bate, M. R., & Vine, S. G. 2003, MNRAS, 343, 413
Castor, J., McCray, R., & Weaver, R. 1975, ApJ, 200, L107
Cuadra, J., Nayakshin, S., Springel, V., & Di Matteo, T. 2006, MNRAS, 366, 358
Diehl, S., Rockefeller, G., Fryer, C. L., Riethmiller, D., & Statler, T. S. 2015,

PASA, 32, e048
Dougherty, S. M., & Williams, P. M. 2000, MNRAS, 319, 1005
Dyson, J. E. 1984, Ap&SS, 106, 181
Fujii, M., Iwasawa, M., Funato, Y., & Makino, J. 2007, PASJ, 59, 1095
Hill, G. M., Moffat, A. F. J., & St-Louis, N. 2002, MNRAS, 335, 1069
Höfner, S. 2015, Why Galaxies Care about AGB Stars III: A Closer Look in

Space and Time (Vienna, Austria), 497, 333
Hubber, D. A., Falle, S. A. E. G., & Goodwin, S. P. 2013, MNRAS, 432,

711
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 543
Körtgen, B., Seifried, D., Banerjee, R., Vázquez-Semadeni, E., & Zamora-

Avilés, M. 2016, MNRAS, 459, 3460
Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613
Lamers, H. J. G. L. M., & Cassinelli, J. P. 1999, Introduction to Stellar Winds

(Cambridge: Cambridge University Press)

Lombardi, J. C., Sills, A., Rasio, F. A., & Shapiro, S. L. 1999, J. Comput. Phys.,
152, 687

Lützgendorf, N., van der Helm, E., Pelupessy, F. I., & Portegies Zwart, S. 2016,
MNRAS, 456, 3645

Maciel, W. J. 2014, Hydrodynamics and Stellar Winds: An Introduction (Cham:
Springer)

Meyer-Vernet, N. 2007, Basics of the Solar Wind (Cambridge: Cambridge
University Press)

Mohamed, S., Mackey, J., & Langer, N. 2012, A&A, 541, A1
Monaghan, J. J. 1992, ARA&A, 30, 543
Muratov, A. L., Kereš, D., Faucher-Giguère, C.-A., et al. 2015, MNRAS, 454,

2691
Nowotny, W., Höfner, S., & Aringer, B. 2010, A&A, 514, A35
Oey, M. S., & Clarke, C. J. 2009, Massive Stars: Feedback Effects in the Local

Universe (Cambridge: Cambridge University Press), 74
Owocki, S. 2013, in Stellar Winds, eds. T. D. Oswalt, & M. A. Barstow,

735
Owocki, S. P., Castor, J. I., & Rybicki, G. B. 1988, ApJ, 335, 914
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Pelupessy, F.I. 2005, PhD Thesis, Leiden Observatory, Leiden University,

Leiden, The Netherlands
Pelupessy, F. I., & Portegies Zwart, S. 2012, MNRAS, 420, 1503
Pelupessy, F. I., Jänes, J., & Portegies Zwart, S. 2012, New Ast., 17,

711
Pelupessy, F. I., van Elteren, A., de Vries, N., et al. 2013, A&A, 557, A84
Portegies Zwart, S., & McMillan, S. 2018, Astrophysical Recipes: The Art of

AMUSE (Bristol: IOP Publishing)
Portegies Zwart, S. F., & Verbunt, F. 2012, Astrophysics Source Code Library

[record ascl:1201.003]
Portegies Zwart, S., McMillan, S. L. W., van Elteren, E., Pelupessy, I., &

de Vries, N. 2013, Comput. Phys. Commun., 183, 456
Portegies Zwart, S., Arjen, V., Inti, P., et al. 2018, AMUSE: the Astrophysical

Multipurpose Software Environment, DOI: 10.5281/zenodo.1443252
Puls, J., Sundqvist, J. O., Najarro, F., & Hanson, M. M. 2009, AIP Conf. Proc.,

1171, 123
Puls, J., Sundqvist, J. O., & Markova, N. 2015, New Windows Massive Stars,

307, 25
Rimoldi, A., Portegies Zwart, S., & Rossi, E. M. 2016, Comput. Astrophys.

Cosmol., 3, 2
Rogers, H., & Pittard, J. M. 2013, MNRAS, 431, 1337
Saladino, M. I., Pols, O. R., van der Helm, E., Pelupessy, I., & Portegies Zwart,

S. 2018, A&A, 618, A50
Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics (New

York: Academic)
Springel, V. 2005, MNRAS, 364, 1105
Sugawara, Y., Tsuboi, Y., & Maeda, Y. 2008, A&A, 490, 259
Taylor, G. 1950, Proc. R. Soc. London Ser. A, 201, 175
Theuns, T., & Jorissen, A. 1993, MNRAS, 265, 946
van Elteren, A., Pelupessy, I., & Portegies Zwart, S. 2014, R. Soc. London Philos.

Trans. Ser. A, 372, 30385
Wall, J., McMillan, S. L. W., Mac Low, M. M., et al. 2017, AAS Meeting #229,

229, 153.02
Wang, J., & White, S. D. M. 2007, MNRAS, 380, 93
White, S. D. M. 1996, in Cosmology and Large Scale Structure, eds.

R. Schaeffer, J. Silk, M. Spiro, & J. Zinn-Justin, 349

A85, page 14 of 15

http://linker.aanda.org/10.1051/0004-6361/201732020/1
http://linker.aanda.org/10.1051/0004-6361/201732020/2
http://linker.aanda.org/10.1051/0004-6361/201732020/2
http://linker.aanda.org/10.1051/0004-6361/201732020/3
http://linker.aanda.org/10.1051/0004-6361/201732020/4
http://linker.aanda.org/10.1051/0004-6361/201732020/5
http://linker.aanda.org/10.1051/0004-6361/201732020/6
http://linker.aanda.org/10.1051/0004-6361/201732020/7
http://linker.aanda.org/10.1051/0004-6361/201732020/8
http://linker.aanda.org/10.1051/0004-6361/201732020/9
http://linker.aanda.org/10.1051/0004-6361/201732020/10
http://linker.aanda.org/10.1051/0004-6361/201732020/11
http://linker.aanda.org/10.1051/0004-6361/201732020/12
http://linker.aanda.org/10.1051/0004-6361/201732020/12
http://linker.aanda.org/10.1051/0004-6361/201732020/13
http://linker.aanda.org/10.1051/0004-6361/201732020/13
http://linker.aanda.org/10.1051/0004-6361/201732020/14
http://linker.aanda.org/10.1051/0004-6361/201732020/15
http://linker.aanda.org/10.1051/0004-6361/201732020/16
http://linker.aanda.org/10.1051/0004-6361/201732020/17
http://linker.aanda.org/10.1051/0004-6361/201732020/18
http://linker.aanda.org/10.1051/0004-6361/201732020/18
http://linker.aanda.org/10.1051/0004-6361/201732020/19
http://linker.aanda.org/10.1051/0004-6361/201732020/20
http://linker.aanda.org/10.1051/0004-6361/201732020/21
http://linker.aanda.org/10.1051/0004-6361/201732020/22
http://linker.aanda.org/10.1051/0004-6361/201732020/23
http://linker.aanda.org/10.1051/0004-6361/201732020/24
http://linker.aanda.org/10.1051/0004-6361/201732020/24
http://linker.aanda.org/10.1051/0004-6361/201732020/25
http://linker.aanda.org/10.1051/0004-6361/201732020/26
http://linker.aanda.org/10.1051/0004-6361/201732020/26
http://linker.aanda.org/10.1051/0004-6361/201732020/27
http://linker.aanda.org/10.1051/0004-6361/201732020/28
http://linker.aanda.org/10.1051/0004-6361/201732020/29
http://linker.aanda.org/10.1051/0004-6361/201732020/31
http://linker.aanda.org/10.1051/0004-6361/201732020/32
http://linker.aanda.org/10.1051/0004-6361/201732020/32
http://linker.aanda.org/10.1051/0004-6361/201732020/33
http://linker.aanda.org/10.1051/0004-6361/201732020/34
http://linker.aanda.org/10.1051/0004-6361/201732020/34
http://ascl.net/1201.003
http://linker.aanda.org/10.1051/0004-6361/201732020/36
http://linker.aanda.org/10.1051/0004-6361/201732020/37
http://linker.aanda.org/10.1051/0004-6361/201732020/37
https://doi.org/10.5281/zenodo.1443252
http://linker.aanda.org/10.1051/0004-6361/201732020/38
http://linker.aanda.org/10.1051/0004-6361/201732020/38
http://linker.aanda.org/10.1051/0004-6361/201732020/39
http://linker.aanda.org/10.1051/0004-6361/201732020/39
http://linker.aanda.org/10.1051/0004-6361/201732020/40
http://linker.aanda.org/10.1051/0004-6361/201732020/40
http://linker.aanda.org/10.1051/0004-6361/201732020/41
http://linker.aanda.org/10.1051/0004-6361/201732020/42
http://linker.aanda.org/10.1051/0004-6361/201732020/43
http://linker.aanda.org/10.1051/0004-6361/201732020/44
http://linker.aanda.org/10.1051/0004-6361/201732020/45
http://linker.aanda.org/10.1051/0004-6361/201732020/46
http://linker.aanda.org/10.1051/0004-6361/201732020/47
http://linker.aanda.org/10.1051/0004-6361/201732020/48
http://linker.aanda.org/10.1051/0004-6361/201732020/48
http://linker.aanda.org/10.1051/0004-6361/201732020/49
http://linker.aanda.org/10.1051/0004-6361/201732020/49
http://linker.aanda.org/10.1051/0004-6361/201732020/50
http://linker.aanda.org/10.1051/0004-6361/201732020/51

E. van der Helm et al.: Simulating stellar winds in AMUSE

Appendix A: Equations

In this appendix, we calculate the analytical predictions for
a stationary, spherically symmetric wind which are used in
stellar_wind.py. For these calculations, we assume that the
mass-loss rate (Ṁ) and the velocity as a function of radius (v(r))
are known and we define the acceleration

a(r) =
dv
dt

=
dv
dr

dr
dt

= v(r)
dv
dr
· (A.1)

A.1. Radius as a function of time

To calculate the outer radius of a new wind shell, we need to know
the radius as a function of time (r(t)) where the wind starts at the
stellar surface, so r(0) = R∗. Since v(r) is known, we can write

v(r(t)) =
dr(t)

dt
,

dt =
dr
v(r)

, (A.2)

which is solved by,

t =

∫ r(t)

R∗

1
v(r)

dr. (A.3)

In general this equation has to be solved numerically10 for r(t),
although for some velocity functions we can solve it analytically,
for example if v(r) = v∞ then

t =
1
v∞

∫ r(t)

R∗
dr =

r(t) − R∗
v∞

,

r(t) = R∗ + t ∗ v∞. (A.4)

A.2. New particle radii

When we create a new shell of particles, we want the density pro-
file in the shell to match the density profile corresponding to the
chosen velocity profile. To calculate that density profile, we first
note that themass-loss rate, Ṁ is related to thedensityand thevelo-
city at any point of the wind via the equation of mass continuity,

Ṁ = 4πr2ρ(r)v(r), (A.5)

where ρ is the density of the wind. Because we assume that Ṁ
and v(r) are known, we can rewrite this as

ρ(r) =
Ṁ

4πr2v(r)
· (A.6)

To generate the positions of new particles, we start with a
cube filled with particle positions with a uniform density. In our
code, this can be a simple grid or randomly generated positions.
From that cube, we remove all particles that are not inside the
desired shell to get a shell of particles with uniform density. After
that, we shift the particle positions in the radial direction to get
the desired density profile.

To find the new particle radius, we define the relative
enclosed mass, x as

x =

∫ rp

R∗
πr2ρ(r)dr∫ r(t)

R∗
πr2ρ(r)dr

, (A.7)

where rp is the radius of the particle and R∗ and r(t) are the inner
and outer radius of the shell respectively. For the uniform density
shell that was generated, this reduces to

10 When solving the equations mentioned here numerically, we
use the python library scipy (scipy.org). For integrals we use
scipy.integrate.quad and for finding a root we use scipy.optimize.brentq.
See docs.scipy.org for the details of these methods.

xu =

∫ rp

R∗
r2dr∫ r(t)

R∗
r2dr

=
r3

p − R3
∗

r(t)3 − R3
∗

· (A.8)

For the desired density profile based on a given velocity profile,
we rewrite Eq. (A.7) in terms of v using Eq. (A.6)

xv =

∫ rp

R∗
Ṁ
v(r) dr∫ r(t)

R∗
Ṁ
v(r) dr

=

∫ rp

R∗
1
v(r) dr∫ r(t)

R∗
1
v(r) dr

· (A.9)

We then set xu = xv where xu is calculated with the old particle
radius (of the generated uniform density shell). The last step is
to solve Eq. (A.9) to get the new particle radius rp. In general
this equation has to be solved numerically, although for some
velocity functions we can solve it analytically, for example if
v(r) = v∞ then

x =

∫ rp

R∗
1
v∞

dr∫ r(t)
R∗

1
v∞

dr
=

∫ rp

R∗
dr∫ r(t)

R∗
dr

=
rp − R∗

r(t) − R∗
,

rp = R∗ + x(r(t) − R∗). (A.10)

A.3. Gas pressure

To calculate the expected acceleration, aP(r) caused by the gra-
dient of the gas pressure, P(r) we assume a polytropic equation
of state,

P = Kρ(r)γ, (A.11)

where K is the polytropic constant and γ = 5/3 is the adiabatic
index for a monoatomic ideal gas. Because K is constant we can
calculate it at the surface of the star and use that value for the
entire wind. To calculate P(R∗) we use

P(r) = (γ − 1)ρ(r)u, (A.12)

where u is the internal energy of the gas particles defined by

u =
3
2

kBT∗
µ

, (A.13)

where kB is the Boltzmann constant, T∗ is the temperature at the
photosphere of the star and µ is the mean molecular weight of
the gas particles. Combining Eqs. (A.11) and (A.12) we get

K = u(γ − 1)ρ(R∗)1−γ. (A.14)

The acceleration caused by the gradient of the gas pressure
is

aP(r) = −
1
ρ(r)

∂P(r)
∂r

, (A.15)

which we can rewrite using Eqs. (A.11) and (A.6)

aP(r) = −
K
ρ(r)

∂ργ

∂r

= −
K
ρ(r)

γρ(r)γ−1 ∂

∂r
Ṁ

4πr2v(r)

= Kγρ(r)γ−1
(

2
r

+
1
v(r)

dv(r)
dr

)
· (A.16)

A.4. Density as a function of radius

In Sects. 3.3 and 3.4 we calculate the density as a function of
radius. For each radius r, we take six points in six directions (+r
and −r along each axis x, y and z) and calculate the SPH density
at those points. Note that there does not need to be an SPH par-
ticle at that point to calculate the density. We then take the mean
of these 6 densities to be the density at that radius. To calculate
the radius with maximum density rρmax, we calculate this for a
grid of radii and select the radius with the largest density.

A85, page 15 of 15

http://scipy.org

	Introduction
	Methods
	Calculating stellar wind properties
	Simple wind
	SPH and initial distributions

	Accelerating wind
	Heating wind

	Application
	Fast winds
	Slow wind
	Embedded star
	Supernova
	Colliding wind triple

	Discussion and conclusion
	References
	Equations
	Radius as a function of time
	New particle radii
	Gas pressure
	Density as a function of radius

