81 research outputs found

    Key role for ubiquitin protein modification in TGFβ signal transduction

    Get PDF
    The transforming growth factor β (TGFβ) superfamily of signal transduction molecules plays crucial roles in the regulation of cell behavior. TGFβ regulates gene transcription through Smad proteins and signals via non-Smad pathways. The TGFβ pathway is strictly regulated, and perturbations lead to tumorigenesis. Several pathway components are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. Smurfs are well known negative regulators of TGFβ, which function as E3 ligases recruited by adaptors such as I-Smads. TGFβ signaling can also be enhanced by E3 ligases, such as Arkadia, that target repressors for degradation. It is becoming clear that E3 ligases often target multiple pathways, thereby acting as mediators of signaling cross-talk. Regulation via ubiquitination involves a complex network of E3 ligases, adaptor proteins, and deubiquitinating enzymes (DUBs), the last-mentioned acting by removing ubiquitin from its targets. Interestingly, also non-degradative ubiquitin modifications are known to play important roles in TGFβ signaling. Ubiquitin modifications thus play a key role in TGFβ signal transduction, and in this review we provide an overview of known players, focusing on recent advances

    Systematische Nomenklatur der organischen Chemie. English

    No full text
    x, 228 p. ; 21 cm

    Über verbrückte Diaryl- und Triarylamin-Radikalkationen

    No full text
    Die verbrückten Diaryl- und Triarylamin-Radikalkationen 2–6, 8 und 9 wurden in Trifluoressigsäure durch Oxidation der entsprechenden Amine mit Bleitetraacetat erzeugt und stationär oder im Durchfluß ESR-spektroskopisch untersucht. Der Einfluß der o,o′-Brücken auf die Eigenschaften der Amin-Radikalkationen wird diskutiert

    Synthetic, structural, and spectroscopic studies of sterically crowded tin-chalcogen acenaphthenes

    Get PDF
    The work in this project was supported by the Engineering and Physical Sciences Research Council (EPSRC) and EaStCHEM.A series of sterically encumbered peri-substituted acenaphthenes have been prepared containing chalcogen and tin moieties at the close 5,6-positions (Acenap[SnPh3][ER], Acenap = acenaphthene-5,6-diyl, ER = SPh (1), SePh (2), TePh (3), SEt (4); Acenap[SnPh2Cl][EPh], E = S (5), Se (6); Acenap[SnBu2Cl][ER], ER = SPh(7), SePh (8), SEt (9)). Two geminally bis(peri-substituted) derivatives ({Acenap[SPh2]}2SnX2, X = Cl (10), Ph (11)) have also been prepared, along with the bromo–sulfur derivative Acenap(Br)(SEt) (15). All 11 chalcogen–tin compounds align a Sn–CPh/Sn–Cl bond along the mean acenaphthene plane and position a chalcogen lone pair in close proximity to the electropositive tin center, promoting the formation of a weakly attractive intramolecular donor–acceptor E···Sn–CPh/E···Sn–Cl 3c-4e type interaction. The extent of E→Sn bonding was investigated by X-ray crystallography and solution-state NMR and was found to be more prevalent in triorganotin chlorides 5–9 in comparison with triphenyltin derivatives 1–4. The increased Lewis acidity of the tin center resulting from coordination of a highly electronegative chlorine atom was found to greatly enhance the lp(E)−σ*(Sn–Y) donor–acceptor 3c-4e type interaction, with substantially shorter E–Sn peri distances observed in the solid state for triorganotin chlorides 5–9 (∼75% ∑rvdW) and significant 1J(119Sn,77Se) spin–spin coupling constants (SSCCs) observed for 6 (163 Hz) and 8 (143 Hz) in comparison to that for the triphenyltin derivative 2 (68 Hz). Similar observations were observed for geminally bis(peri-substituted) derivatives 10 and 11.PostprintPeer reviewe
    corecore