541 research outputs found

    On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions

    Full text link
    Symbolic ultrametrics define edge-colored complete graphs K_n and yield a simple tree representation of K_n. We discuss, under which conditions this idea can be generalized to find a symbolic ultrametric that, in addition, distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus, yielding a simple tree representation of G. We prove that such a symbolic ultrametric can only be defined for G if and only if G is a so-called cograph. A cograph is uniquely determined by a so-called cotree. As not all graphs are cographs, we ask, furthermore, what is the minimum number of cotrees needed to represent the topology of G. The latter problem is equivalent to find an optimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph (V,E_i) of G is a cograph. An upper bound for the integer k is derived and it is shown that determining whether a graph has a cograph 2-decomposition, resp., 2-partition is NP-complete

    Partial Homology Relations - Satisfiability in terms of Di-Cographs

    Full text link
    Directed cographs (di-cographs) play a crucial role in the reconstruction of evolutionary histories of genes based on homology relations which are binary relations between genes. A variety of methods based on pairwise sequence comparisons can be used to infer such homology relations (e.g.\ orthology, paralogy, xenology). They are \emph{satisfiable} if the relations can be explained by an event-labeled gene tree, i.e., they can simultaneously co-exist in an evolutionary history of the underlying genes. Every gene tree is equivalently interpreted as a so-called cotree that entirely encodes the structure of a di-cograph. Thus, satisfiable homology relations must necessarily form a di-cograph. The inferred homology relations might not cover each pair of genes and thus, provide only partial knowledge on the full set of homology relations. Moreover, for particular pairs of genes, it might be known with a high degree of certainty that they are not orthologs (resp.\ paralogs, xenologs) which yields forbidden pairs of genes. Motivated by this observation, we characterize (partial) satisfiable homology relations with or without forbidden gene pairs, provide a quadratic-time algorithm for their recognition and for the computation of a cotree that explains the given relations

    First case of trans apical implantation of an aortic valve in a patient with dextrocardia

    Get PDF
    We describe the clinical presentation and implantation procedure of the first transcatheter aortic valve implantation described in a patient with dextrocardia

    Quadrilateral-octagon coordinates for almost normal surfaces

    Full text link
    Normal and almost normal surfaces are essential tools for algorithmic 3-manifold topology, but to use them requires exponentially slow enumeration algorithms in a high-dimensional vector space. The quadrilateral coordinates of Tollefson alleviate this problem considerably for normal surfaces, by reducing the dimension of this vector space from 7n to 3n (where n is the complexity of the underlying triangulation). Here we develop an analogous theory for octagonal almost normal surfaces, using quadrilateral and octagon coordinates to reduce this dimension from 10n to 6n. As an application, we show that quadrilateral-octagon coordinates can be used exclusively in the streamlined 3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing experimental running times by factors of thousands. We also introduce joint coordinates, a system with only 3n dimensions for octagonal almost normal surfaces that has appealing geometric properties.Comment: 34 pages, 20 figures; v2: Simplified the proof of Theorem 4.5 using cohomology, plus other minor changes; v3: Minor housekeepin

    Three-way symbolic tree-maps and ultrametrics

    Get PDF
    Three-way dissimilarities are a generalization of (two-way) dissimilarities which can be used to indicate the lack of homogeneity or resemblance between any three objects. Such maps have applications in cluster analysis and have been used in areas such as psychology and phylogenetics, where three-way data tables can arise. Special examples of such dissimilarities are three-way tree-metrics and ultrametrics, which arise from leaf-labelled trees with edges labelled by positive real numbers. Here we consider three-way maps which arise from leaf-labelled trees where instead the interior vertices are labelled by an arbitrary set of values. For unrooted trees, we call such maps three-way symbolic tree-maps; for rooted trees, we call them three-way symbolic ultrametrics since they can be considered as a generalization of the (two-way) symbolic ultrametrics of Bocker and Dress. We show that, as with two- and three-way tree-metrics and ultrametrics, three-way symbolic tree-maps and ultrametrics can be characterized via certain k-point conditions. In the unrooted case, our characterization is mathematically equivalent to one presented by Gurvich for a certain class of edge-labelled hypergraphs. We also show that it can be decided whether or not an arbitrary three-way symbolic map is a tree-map or a symbolic ultrametric using a triplet-based approach that relies on the so-called BUILD algorithm for deciding when a set of 3-leaved trees or triplets can be displayed by a single tree. We envisage that our results will be useful in developing new approaches and algorithms for understanding 3-way data, especially within the area of phylogenetics

    Health Literacy and Medication Practices in Senior Housing Residents

    Get PDF
    Objective: To conduct a descriptive analysis of health literacy, knowledge of prescribed medications, and methods of administering medications in a cohort of senior housing residents.https://scholarworks.uvm.edu/comphp_gallery/1027/thumbnail.jp

    Beyond representing orthology relations by trees

    Get PDF
    Reconstructing the evolutionary past of a family of genes is an important aspect of many genomic studies. To help with this, simple relations on a set of sequences called orthology relations may be employed. In addition to being interesting from a practical point of view they are also attractive from a theoretical perspective in that e.\,g.\,a characterization is known for when such a relation is representable by a certain type of phylogenetic tree. For an orthology relation inferred from real biological data it is however generally too much to hope for that it satisfies that characterization. Rather than trying to correct the data in some way or another which has its own drawbacks, as an alternative, we propose to represent an orthology relation δ\delta in terms of a structure more general than a phylogenetic tree called a phylogenetic network. To compute such a network in the form of a level-1 representation for δ\delta, we formalize an orthology relation in terms of the novel concept of a symbolic 3- dissimilarity which is motivated by the biological concept of a ``cluster of orthologous groups'', or COG for short. For such maps which assign symbols rather that real values to elements, we introduce the novel {\sc Network-Popping} algorithm which has several attractive properties. In addition, we characterize an orthology relation δ\delta on some set XX that has a level-1 representation in terms of eight natural properties for δ\delta as well as in terms of level-1 representations of orthology relations on certain subsets of XX

    Complementarity, quantum erasure and delayed choice with modified Mach-Zehnder interferometers

    Full text link
    Often cited dictums in Quantum Mechanics include "observation disturbance causes loss of interference" and "ignorance is interference". In this paper we propose and describe a series of experiments with modified Mach-Zehnder interferometers showing that one has to be careful when applying such dictums. We are able to show that without interacting in any way with the light quantum (or quanta) expected to behave "wave-like", interference fringes can be lost by simply gaining (or having the potential to gain) the which-path knowledge. Erasing this information may revive the interference fringes. Delayed choice can be added, arriving to an experiment in line with Wheeler's original proposal. We also show that ignorance is not always synonym with having the interference fringes. The often-invoked "collapse of the wavefunction" is found to be a non-necessary ingredient to describe our experiments.Comment: 8 pages, 3 figures; to appear in EPJ

    A Delayed Choice Quantum Eraser

    Get PDF
    This paper reports a "delayed choice quantum eraser" experiment proposed by Scully and Dr\"{u}hl in 1982. The experimental results demonstrated the possibility of simultaneously observing both particle-like and wave-like behavior of a quantum via quantum entanglement. The which-path or both-path information of a quantum can be erased or marked by its entangled twin even after the registration of the quantum.Comment: twocolumn, 4pages, submitted to PR
    • …
    corecore