46 research outputs found

    A compact and robust diode laser system for atom interferometry on a sounding rocket

    Full text link
    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase

    First 10 kg of Naked Germanium Detectors in Liquid Nitrogen installed in the GENIUS-Test-Facility

    Full text link
    The first four naked high purity Germanium detectors were installed successfully in liquid nitrogen in the GENIUS-Test-Facility (GENIUS-TF) in the GRAN SASSO Underground Laboratory on May 5, 2003. This is the first time ever that this novel technique aiming at extreme background reduction in search for rare decays is going to be tested underground. First operational parameters are presented.Comment: 10 pages, latex2e, 8 figures, Was presented (first presentation) at 4th International Conference on Particle Physics Beyond the Standard Model BEYOND'2003, Castle Ringberg, Germany, 9-14 June, 2003, Springer, Heidelberg, Germany, 2003, edited by H.V. Klapdor-Kleingrothau

    Interferometry with Bose-Einstein Condensates in Microgravity

    Full text link
    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia

    New limits on dark--matter WIMPs from the Heidelberg--Moscow experiment

    Get PDF
    New results after 0.69 kg yr of measurement with an enriched 76Ge detector of the Heidelberg--Moscow experiment with an active mass of 2.758 kg are presented. An energy threshold of 9 keV and a background level of 0.042 counts/(kg d keV) in the energy region between 15 keV and 40 keV was reached.The derived limits on the WIMP--nucleon cross section are the most stringent limits on spin--independent interactions obtained to date by using essentially raw data without background subtraction.Comment: 8 pages (latex) including 5 postscript figures and 2 tables. To appear in Phys. Rev. D, 15. December 199

    Investigation of β + β + and β + /EC decay of 106 Cd

    Get PDF
    A low background scintillation detector with a CdWO4 crystal of 1.046 kg was used to search for β+β+ and β+/EC processes in 106Cd. For the neutrinoless mode the limits T1/2(0νβ+β+) ≥ 2.2 · 1019 y and T1/2(0νβ+/EC) ≥ 5.5 · 1019 y were obtained with 90% C.L. For the possible two neutrino decay limits of T1/2(2νβ+β+) ≥ 9.2 · 1017 y and 1/2(2νβ+/EC) ≥ 2.6 · 1017 y have been determined with 99% C.L

    Latest Results from the Heidelberg-Moscow Double Beta Decay Experiment

    Get PDF
    New results for the double beta decay of 76Ge are presented. They are extracted from Data obtained with the HEIDELBERG-MOSCOW, which operates five enriched 76Ge detectors in an extreme low-level environment in the GRAN SASSO. The two neutrino accompanied double beta decay is evaluated for the first time for all five detectors with a statistical significance of 47.7 kg y resulting in a half life of (T_(1/2))^(2nu) = [1.55 +- 0.01 (stat) (+0.19) (-0.15) (syst)] x 10^(21) years. The lower limit on the half-life of the 0nu beta-beta decay obtained with pulse shape analysis is (T_(1/2))^(0_nu) > 1.9 x 10^(25) [3.1 x 10^(25)] years with 90% C.L. (68% C.L.) (with 35.5 kg y). This results in an upper limit of the effective Majorana neutrino mass of 0.35 eV (0.27 eV). No evidence for a Majoron emitting decay mode or for the neutrinoless mode is observed.Comment: 14 pages, revtex, 6 figures, Talk was presented at third International Conference ' Dark Matter in Astro and Particle Physics' - DARK2000, to be publ. in Proc. of DARK2000, Springer (2000). Please look into our HEIDELBERG Non-Accelerator Particle Physics group home page: http://www.mpi-hd.mpg.de/non_acc

    Neutrino mass spectrum and neutrinoless double beta decay

    Get PDF
    The relations between the effective Majorana mass of the electron neutrino, meem_{ee}, responsible for neutrinoless double beta decay, and the neutrino oscillation parameters are considered. We show that for any specific oscillation pattern meem_{ee} can take any value (from zero to the existing upper bound) for normal mass hierarchy and it can have a minimum for inverse hierarchy. This means that oscillation experiments cannot fix in general meem_{ee}. Mass ranges for meem_{ee} can be predicted in terms of oscillation parameters with additional assumptions about the level of degeneracy and the type of hierarchy of the neutrino mass spectrum. These predictions for meem_{ee} are systematically studied in the specific schemes of neutrino mass and flavor which explain the solar and atmospheric neutrino data. The contributions from individual mass eigenstates in terms of oscillation parameters have been quantified. We study the dependence of meem_{ee} on the non-oscillation parameters: the overall scale of the neutrino mass and the relative mass phases. We analyze how forthcoming oscillation experiments will improve the predictions for meem_{ee}. On the basis of these studies we evaluate the discovery potential of future \znbb decay searches. The role \znbb decay searches will play in the reconstruction of the neutrino mass spectrum is clarified. The key scales of meem_{ee}, which will lead to the discrimination among various schemes are: mee0.1m_{ee} \sim 0.1 eV and mee0.005m_{ee} \sim 0.005 eV.Comment: 47 pages, 35 figure

    Neutrino oscillation constraints on neutrinoless double beta decay

    Get PDF
    We have studied the constraints imposed by the results of neutrino oscillation experiments on the effective Majorana mass || that characterizes the contribution of Majorana neutrino masses to the matrix element of neutrinoless double-beta decay. We have shown that in a general scheme with three Majorana neutrinos and a hierarchy of neutrino masses (which can be explained by the see-saw mechanism), the results of neutrino oscillation experiments imply rather strong constraints on the parameter ||. From the results of the first reactor long-baseline experiment CHOOZ and the Bugey experiment it follows that || < 3x10^{-2} eV if the largest mass-squared difference is smaller than 2 eV^2. Hence, we conclude that the observation of neutrinoless double-beta decay with a probability that corresponds to || > 10^{-1} eV would be a signal for a non-hierarchical neutrino mass spectrum and/or non-standard mechanisms of lepton number violation.Comment: 20 pages, including 4 figure

    New Results from the Cryogenic Dark Matter Search Experiment

    Full text link
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are >2X lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8-20 GeV/c^2.Comment: 4 pages, 4 figure

    Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}. These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3-sigma by the annual-modulation measurement of the DAMA collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% CL, and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% CL in the asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D; v.2:clarified conclusions, added content and references based on referee's and readers' comments; v.3: clarified introductory sections, added figure based on referee's comment
    corecore