11 research outputs found

    Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    Get PDF
    Cartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for cartilage reconstructions in otorhinolaryngology as well as in plastic surgery and orthopaedics. The aim of this thesis is to find new tools by which cartilage tissue engineering can be better controlled. In head and neck surgery it is important that tissue engineered cartilage is stable and does not mineralize when used for cartilage reconstructions. Therefore, in this thesis our primary focus was the generation of cartilage of a hyaline phenotype that does not mineralize when implanted in vivo. For this purpose we studied expanded chondrocytes and adult bone-marrow derived mesenchymal stem cells (BMSC). We hypothesize that new insights for cartilage tissue engineering can be gained by studying in-vivo cartilage development during embryonic development. As these processes may involve similar pathways, understanding these common pathways may lead to advances in cartilage tissue engineering. We concentrated on two growth factor signaling pathways known to be important for cartilage development: TGF-β and FGF. As a background for the research in this thesis we will discuss the following topics in this general introduction: cartilage, cartilage defects in head and neck surgery, cartilage tissue engineering, embryonic chondrogenesis, and growt

    Colorectal liver metastases: Surgery versus thermal ablation (COLLISION) - a phase III single-blind prospective randomized controlled trial

    Get PDF
    Background: Radiofrequency ablation (RFA) and microwave ablation (MWA) are widely accepted techniques to eliminate small unresectable colorectal liver metastases (CRLM). Although previous studies labelled thermal ablation inferior to surgical resection, the apparent selection bias when comparing patients with unresectable disease to surgical candidates, the superior safety profile, and the competitive overall survival results for the more recent reports mandate the setup of a randomized controlled trial. The objective of the COLLISION trial is to prove non-inferiority of thermal ablation compared to hepatic resection in patients with at least one resectable and ablatable CRLM and no extrahepatic disease. Methods: In this two-arm, single-blind multi-center phase-III clinical trial, six hundred and eighteen patients with at least one CRLM (≤3cm) will be included to undergo either surgical resection or thermal ablation of appointed target lesion(s) (≤3cm). Primary endpoint is OS (overall survival, intention-to-treat analysis). Main secondary endpoints are overall disease-free survival (DFS), time to progression (TTP), time to local progression (TTLP), primary and assisted technique efficacy (PTE, ATE), procedural morbidity and mortality, length of hospital stay, assessment of pain and quality of life (QoL), cost-effectiveness ratio (ICER) and quality-adjusted life years (QALY). Discussion: If thermal ablation proves to be non-inferior in treating lesions ≤3cm, a switch in treatment-method may lead to a reduction of the post-procedural morbidity and mortality, length of hospital stay and incremental costs without compromising oncological outcome for patients with CRLM. Trial registration:NCT03088150 , January 11th 2017

    Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification

    No full text
    Item does not contain fulltextThe aim of this study was to investigate the roles of Smad2/3 and Smad1/5/8 phosphorylation in transforming growth factor-beta-induced chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) to assess whether specific targeting of different Smad signaling pathways offers possibilities to prevent terminal differentiation and mineralization of chondrogenically differentiated BMSCs. Terminally differentiated chondrocytes produced in vitro by chondrogenic differentiation of BMSCs or studied ex vivo during murine embryonic limb formation stained positive for both Smad2/3P and Smad1/5/8P. Hyaline-like cartilage produced in vitro by articular chondrocytes or studied in ex vivo articular cartilage samples that lacked expression for matrix metalloproteinase 13 and collagen X only expressed Smad2/3P. When either Smad2/3 or Smad1/5/8 phosphorylation was blocked in BMSC culture by addition of SB-505124 or dorsomorphin throughout culture, no collagen II expression was observed, indicating that both pathways are involved in early chondrogenesis. Distinct functions for these pathways were demonstrated when Smad signaling was blocked after the onset of chondrogenesis. Blocking Smad2/3P after the onset of chondrogenesis resulted in a halt in collagen II production. On the other hand, blocking Smad1/5/8P during this time period resulted in decreased expression of matrix metalloproteinase 13, collagen X, and alkaline phosphatase while allowing collagen II production. Moreover, blocking Smad1/5/8P prevented mineralization. This indicates that while Smad2/3P is important for continuation of collagen II deposition, Smad1/5/8 phosphorylation is associated with terminal differentiation and mineralization

    Differences in Cartilage-Forming Capacity of Expanded Human Chondrocytes From Ear and Nose and Their Gene Expression Profiles

    Get PDF
    The aim of this study was to evaluate the potential of culture-expanded human auricular and nasoseptal chondrocytes as cell source for regeneration of stable cartilage and to analyze the differences in gene expression profile of expanded chondrocytes from these specific locations. Auricular chondrocytes in monolayer proliferated less and more slowly (two passages took 26.7 +/- 2.1 days and were reached in 4.37 +/- 0.30 population doublings) than nasoseptal chondrocytes (19.3 +/- 2.5 days: 5.45 +/- 0.20 population doublings). However, auricular chondrocytes produced larger pellets with more cartilage-like matrix than nasoseptal chondrocytes (2.2 +/- 0.71 vs. 1.7 +/- 0.13 mm in diameter after 35 days of culture). Although the matrix formed by auricular and nasoseptal chondrocytes contained collagen X, it did not mineralize in an in vitro model or after in vivo subcutaneous implantation. A DNA microarray study on expanded auricular and nasoseptal chondrocytes from the same donors revealed 1,090 differentially expressed genes. No difference was observed in the expression of known markers of chondrogenic capacity (e.g., collagen II, FGFR3, BMP2, and ALK1). The most striking differences were that the auricular chondrocytes had a higher expression of anabolic growth factors BMP5 and IGF1, while matrix-degrading enzymes MMP13 and ADAMTS5 were higher expressed in nasoseptal chondrocytes. This might offer a possible explanation for the observed higher matrix production by auricular chondrocytes. Moreover, chondrocytes isolated from auricular or nasoseptal cartilage had specific gene expression profiles even after expansion. These differently expressed genes were not restricted to known characterization of donor site subtype (e.g., elastic), but were also related to developmental processe

    Evaluating hearing performance with cochlear implants within the same patient using daily randomization and imaging based fitting: The ELEPHANT study

    No full text
    Contains fulltext : 224694.pdf (publisher's version ) (Open Access)BACKGROUND:Prospective research in the field of cochlear implants is hampered by methodological issues and small sample sizes. The ELEPHANT study presents an alternative clinical trial design with a daily randomized approach evaluating individualized tonotopical fitting of a cochlear implant (CI). METHODS:A single-blinded, daily-randomized clinical trial will be implemented to evaluate a new imaging-based CI mapping strategy. A minimum of 20 participants will be included from the start of the rehabilitation process with a 1-year follow-up period. Based on a post-operative cone beam CT scan (CBCT), mapping of electrical input will be aligned to natural place-pitch arrangement in the individual cochlea. The CI's frequency allocation table will be adjusted to match the electrical stimulation of frequencies as closely as possible to corresponding acoustic locations in the cochlea. A randomization scheme will be implemented whereby the participant, blinded to the intervention allocation, crosses over between the experimental and standard fitting program on a daily basis, and thus effectively acts as his own control, followed by a period of free choice between both maps to incorporate patient preference. With this new approach the occurrence of a first-order carryover effect and a limited sample size is addressed. DISCUSSION:The experimental fitting strategy is thought to give rise to a steeper learning curve, result in better performance in challenging listening situations, improve sound quality, better complement residual acoustic hearing in the contralateral ear and be preferred by recipients of a CI. Concurrently, the suitability of the novel trial design will be considered in investigating these hypotheses. TRIAL REGISTRATION:ClinicalTrials.gov: NCT03892941. Registered 27 March 2019.14 p

    Colorectal liver metastases: surgery versus thermal ablation (COLLISION) – a phase III single-blind prospective randomized controlled trial

    No full text
    Abstract Background Radiofrequency ablation (RFA) and microwave ablation (MWA) are widely accepted techniques to eliminate small unresectable colorectal liver metastases (CRLM). Although previous studies labelled thermal ablation inferior to surgical resection, the apparent selection bias when comparing patients with unresectable disease to surgical candidates, the superior safety profile, and the competitive overall survival results for the more recent reports mandate the setup of a randomized controlled trial. The objective of the COLLISION trial is to prove non-inferiority of thermal ablation compared to hepatic resection in patients with at least one resectable and ablatable CRLM and no extrahepatic disease. Methods In this two-arm, single-blind multi-center phase-III clinical trial, six hundred and eighteen patients with at least one CRLM (≤3 cm) will be included to undergo either surgical resection or thermal ablation of appointed target lesion(s) (≤3 cm). Primary endpoint is OS (overall survival, intention-to-treat analysis). Main secondary endpoints are overall disease-free survival (DFS), time to progression (TTP), time to local progression (TTLP), primary and assisted technique efficacy (PTE, ATE), procedural morbidity and mortality, length of hospital stay, assessment of pain and quality of life (QoL), cost-effectiveness ratio (ICER) and quality-adjusted life years (QALY). Discussion If thermal ablation proves to be non-inferior in treating lesions ≤3 cm, a switch in treatment-method may lead to a reduction of the post-procedural morbidity and mortality, length of hospital stay and incremental costs without compromising oncological outcome for patients with CRLM. Trial registration NCT03088150, January 11th 2017
    corecore