35 research outputs found

    Metasurface supporting quasi-BIC for optical trapping and Raman-spectroscopy of biological nanoparticles

    Get PDF
    Optical trapping combined with Raman spectroscopy have opened new possibilities for analyzing biological nanoparticles. Conventional optical tweezers have proven successful for trapping of a single or a few particles. However, the method is slow and cannot be used for the smallest particles. Thus, it is not adapted to analyze a large number of nanoparticles, which is necessary to get statistically valid data. Here, we propose quasi-bound states in the continuum (quasi-BICs) in a silicon nitride (Si3N4) metasurface to trap smaller particles and many simultaneously. The quasi-BIC metasurface contains multiple zones with high field-enhancement (‘hotspots’) at a wavelength of 785 nm, where a single nanoparticle can be trapped at each hotspot. We numerically investigate the optical trapping of a type of biological nanoparticles, namely extracellular vesicles (EVs), and study how their presence influences the resonance behavior of the quasi-BIC. It is found that perturbation theory and a semi-analytical expression give good estimates for the resonance wavelength and minimum of the potential well, as a function of the particle radius. This wavelength is slightly shifted relative to the resonance of the metasurface without trapped particles. The simulations show that the Q-factor can be increased by using a thin metasurface. The thickness of the layer and the asymmetry of the unit cell can thus be used to get a high Q-factor. Our findings show the tight fabrication tolerances necessary to make the metasurface. If these can be overcome, the proposed metasurface can be used for a lab-on-a-chip for mass-analysis of biological nanoparticles

    Single-mode limit and bending losses for shallow Rib Si3N4 waveguides

    Get PDF
    Published version also available at http://dx.doi.org/10.1109/JPHOT.2014.2387252.The single-mode limit and bending losses for shallow rib waveguides are studied using the full vectorial film mode matching method. The maximum rib height for single-mode waveguides is found to be on the order of 10 nm for a rib width of 2 m and a wavelength of 785 nm, with the exact value depending on the core thickness and the polarization. Bending losses are calculated as a function of several geometrical parameters, for both polarizations and for the fundamental and the first order modes. Bending losses decrease significantly with rib height for single-mode waveguides. For slightly larger rib heights, giving multimode waveguides, it is found that the bending losses for the first-order mode are several orders of magnitude larger than for the fundamental mode. Thus, a small bend can act as an excellent mode filter, making it possible to use higher ribs giving low bending losses for the fundamental mode, while maintaining the waveguide practically single-mode. For TM-polarization, leakage loss can be important and can cause bending losses to increase for larger rib heights (8–80 nm)

    Demonstrating low Raman background in UV-written SiO2 waveguides

    Get PDF
    Raman spectroscopy can give a chemical ’fingerprint’ from both inorganic and organic samples, and has become a viable method of measuring the chemical composition of single biological particles. In parallel, integration of waveguides and microfluidics allows for the creation of miniaturized optical sensors in lab-on-a-chip devices. The prospect of combining integrated optics and Raman spectroscopy for Raman-on-chip offers new opportunities for optical sensing. A major limitation for this is the Raman background of the waveguide. This background is very low for optical fibers but remains a challenge for planar waveguides. In this work, we demonstrate that UV-written SiO2 waveguides, designed to mimic the performance of optical fibers, offer a significantly lower background than competing waveguide materials such as Si3N4. The Raman scattering in the waveguides is measured in absolute units and compared to that of optical fibers and Si3N4 waveguides. A limited study of the sensitivity of the Raman scattering to changes in pump wavelength and in waveguide design is also conducted. It is revealed that UV-written SiO2 waveguides offer a Raman background lower than −107.4 dB relative to a 785 nm pump and −106.5 dB relative to a 660 nm pump. Furthermore, the UV-written SiO2 waveguide demonstrates a 15 dB lower Raman background than a Si3N4 waveguide and is only 8.7 − 10.3 dB higher than optical fibers. Comparison with a polystyrene bead (in free space, diameter 7 µm) reveal an achievable peak SNR of 10.4 dB, showing the potential of UV-SiO2 as a platform for a Raman-on-chip device capable of measuring single particles

    Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles

    No full text
    Design, fabrication, and optimization of tantalum pentoxide (Ta2O5) waveguides to obtain low-loss guidance at a wavelength of 1070 nm are reported. The high-refractive index contrast (Δn ~ 0.65, compared to silicon oxide) of Ta2O5 allows strong confinement of light in waveguides of submicrometer thickness (200 nm), with enhanced intensity in the evanescent field. We have employed the strong evanescent field from the waveguide to propel micro-particles with higher velocity than previously reported. An optical propelling velocity of 50 µm/s was obtained for 8 µm polystyrene particles with guided power of only 20 mW

    Identification of extracellular vesicles from their Raman spectra via self-supervised learning

    Get PDF
    Extracellular vesicles (EVs) released from cells attract interest for their possible role in health and diseases. The detection and characterization of EVs is challenging due to the lack of specialized methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of EVs. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of EVs and lipoproteins from 13 biological sources and from two laboratories. High reconstruction accuracy is maintained despite large variances in frequency range and noise level. It is also shown that the architecture is able to cluster the biological nanoparticles by their Raman spectra and differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs label-free differentiation, including separating EVs from activated vs. non-activated blood platelets and EVs/lipoproteins from prostate cancer patients versus non-cancer controls. The differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify the spectra according to their sample origin. The classification reveals a test sensitivity of 92.2% and selectivity of 92.3% over 769 measurements from two labs that have different measurement configurations.</p

    Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage

    Full text link
    Red blood cells squeeze through micro-capillaries as part of blood circulation in the body. The deformability of red blood cells is thus critical for blood circulation. In this work, we report a method to optically squeeze red blood cells using the evanescent field present on top of a planar waveguide chip. The optical forces from a narrow waveguide are used to squeeze red blood cells to a size comparable to the waveguide width. Optical forces and pressure distributions on the cells are numerically computed to explain the squeezing process. The proposed technique is used to quantify the loss of blood deformability that occurs during blood storage lesion. Squeezing red blood cells using waveguides is a sensitive technique and works simultaneously on several cells, making the method suitable for monitoring stored blood

    Dielectric optical nanoantennas

    Get PDF
    Nanophotonics allows the manipulation of light on the subwavelength scale. Optical nanoantennas are nanoscale elements that enable increased resolution in bioimaging, novel photon sources, solar cells with higher absorption, and the detection of fluorescence from a single molecule. While plasmonic nanoantennas have been extensively explored in the literature, dielectric nanoantennas have several advantages over their plasmonic counterparts, including low dissipative losses and near-field enhancement of both electric and magnetic fields. Nanoantennas increase the optical density of states, which increase the rate of spontaneous emission due to the Purcell effect. The increase is quantified by the Purcell factor, which depends on the mode volume and the quality factor. It is one of the main performance parameters for nanoantennas. One particularly interesting feature of dielectric nanoantennas is the possibility of integrating them into optical resonators with a high quality-factor, further improving the performance of the nanoantennas and giving very high Purcell factors. This review introduces the properties and parameters of dielectric optical nanoantennas, and gives a classification of the nanoantennas based on the number and shape of the nanoantenna elements. An overview of recent progress in the field is provided, and a simulation is included as an example. The simulated nanoantenna, a dimer consisting of two silicon nanospheres separated by a gap, is shown to have a very small mode volume, but a low quality-factor. Some recent works on photonic crystal resonators are reviewed, including one that includes a nanoantenna in the bowtie unit-cell. This results in an enormous increase in the calculated Purcell factor, from 200 for the example dimer, to 8 × 106 for the photonic crystal resonator. Some applications of dielectric nanoantennas are described. With current progress in the field, it is expected that the number of applications will grow and that nanoantennas will be incorporated into new commercial products. A list of relevant materials with high refractive indexes and low losses is presented and discussed. Finally, prospects and major challenges for dielectric nanoantennas are addressed

    Evaluation of crystalline structure quality of Czochralski-silicon using near-infrared tomography

    Get PDF
    In this work, three silicon samples are subject to tomographic scans using a 1.6Îźm laser. The samples were prematurely terminated due to anomalies during the Czhochralski-process. They are taken as analogues of the in situ crystal, where one sample has known aberrant structure in its lowermost 45 mm. The results of the tomographic scans show a distinct difference in transmission profile between the material of known poor monocrystalline structure and assumed good structure. Three different analysis tools are constructed and applied to quantify the quality of the structure from the results of the tomographic scans. The first two analysis tools are applied as correlation filters constructed from patterns resembling the indicative transmission profiles of highquality structure, one pattern being an ideal square wave and the other being experimentally determined from the measurements. Both correlation filters yield clear differentiation of low- vs. high-quality material. The final analysis tool is a deep convolutional neural network (deep CNN) evolved from a predetermined architecture configuration using a genetic algorithm. The trained CNN is shown to differentiate the usable high-quality material from the unusable material with a 98.7% accuracy on a testing set of 76 profiles and successfully assigns quality factors to the material that are in good agreement with the correlation filters and previous observations

    Optical trapping in air on a single interference fringe

    Get PDF
    International audienceStable and reproducible trapping in air of 1 µm and 500 nm dielectric particles has been realized using a dual beam optical fiber tweezers with cleaved commercial single mode fibers. The influence of the interference fringes of the two coherent and counter-propagating trapping beam is investigated by controlling the fringe visibility. Optical trapping on a series of up to 10 fringes or trapping on only one to two fringes has been observed in distinct experiments. High axial trapping efficiencies of up to 1 nN•µm −1 W −1 is observed. The experimental results are supported by numerical simulations
    corecore