17,006 research outputs found

    Noncommutative Dynamics of Random Operators

    Full text link
    We continue our program of unifying general relativity and quantum mechanics in terms of a noncommutative algebra A{\cal A} on a transformation groupoid Γ=E×G\Gamma = E \times G where EE is the total space of a principal fibre bundle over spacetime, and GG a suitable group acting on Γ\Gamma . We show that every aAa \in {\cal A} defines a random operator, and we study the dynamics of such operators. In the noncommutative regime, there is no usual time but, on the strength of the Tomita-Takesaki theorem, there exists a one-parameter group of automorphisms of the algebra A{\cal A} which can be used to define a state dependent dynamics; i.e., the pair (A,ϕ)({\cal A}, \phi), where ϕ\phi is a state on A{\cal A}, is a ``dynamic object''. Only if certain additional conditions are satisfied, the Connes-Nikodym-Radon theorem can be applied and the dependence on ϕ\phi disappears. In these cases, the usual unitary quantum mechanical evolution is recovered. We also notice that the same pair (A,ϕ)({\cal A}, \phi) defines the so-called free probability calculus, as developed by Voiculescu and others, with the state ϕ\phi playing the role of the noncommutative probability measure. This shows that in the noncommutative regime dynamics and probability are unified. This also explains probabilistic properties of the usual quantum mechanics.Comment: 13 pages, LaTe

    Anatomy of Malicious Singularities

    Full text link
    As well known, the b-boundaries of the closed Friedman world model and of Schwarzschild solution consist of a single point. We study this phenomenon in a broader context of differential and structured spaces. We show that it is an equivalence relation ρ\rho , defined on the Cauchy completed total space Eˉ\bar{E} of the frame bundle over a given space-time, that is responsible for this pathology. A singularity is called malicious if the equivalence class [p0][p_0] related to the singularity remains in close contact with all other equivalence classes, i.e., if p0cl[p]p_0 \in \mathrm{cl}[p] for every pEp \in E. We formulate conditions for which such a situation occurs. The differential structure of any space-time with malicious singularities consists only of constant functions which means that, from the topological point of view, everything collapses to a single point. It was noncommutative geometry that was especially devised to deal with such situations. A noncommutative algebra on Eˉ\bar{E}, which turns out to be a von Neumann algebra of random operators, allows us to study probabilistic properties (in a generalized sense) of malicious singularities. Our main result is that, in the noncommutative regime, even the strongest singularities are probabilistically irrelevant.Comment: 16 pages in LaTe

    Eigenvalue distribution of the Dirac operator at finite temperature with (2+1)-flavor dynamical quarks using the HISQ action

    Full text link
    We report on the behavior of the eigenvalue distribution of the Dirac operator in (2+1)-flavor QCD at finite temperature, using the HISQ action. We calculate the eigenvalue density at several values of the temperature close to the pseudocritical temperature. For this study we use gauge field configurations generated on lattices of size 323×832^3 \times 8 with two light quark masses corresponding to pion masses of about 160 and 115 MeV. We find that the eigenvalue density below TcT_c receives large contributions from near-zero modes which become smaller as the temperature increases or the light quark mass decreases. Moreover we find no clear evidence for a gap in the eigenvalue density up to 1.1TcT_c. We also analyze the eigenvalue density near TcT_c where it appears to show a power-law behavior consistent with what is expected in the critical region near the second order chiral symmetry restoring phase transition in the massless limit.Comment: 7 pages, 7 figures, talk presented at the XXIX International Symposium on Lattice Field Theory, July 10-16 2011, Squaw Valley, Lake Tahoe, California, US

    P-wave meson properties with Wilson quarks

    Get PDF
    We describe two calculations involving P-wave mesons made of Wilson quarks: the strong coupling constant αs\alpha_s in the presence of two flavors of light dynamical fermions and the mass and decay constant of the a1a_1 meson.Comment: Poster presented at Lattice '94, September 27--October 1, 1994, Bielefeld, Germany (no changes to manuscript, but correction of Authors list above

    Black brane entropy and hydrodynamics: the boost-invariant case

    Full text link
    The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.Comment: RevTeX, 42 pages, 4 figure

    Orbit bifurcations and the scarring of wavefunctions

    Full text link
    We extend the semiclassical theory of scarring of quantum eigenfunctions psi_{n}(q) by classical periodic orbits to include situations where these orbits undergo generic bifurcations. It is shown that |psi_{n}(q)|^{2}, averaged locally with respect to position q and the energy spectrum E_{n}, has structure around bifurcating periodic orbits with an amplitude and length-scale whose hbar-dependence is determined by the bifurcation in question. Specifically, the amplitude scales as hbar^{alpha} and the length-scale as hbar^{w}, and values of the scar exponents, alpha and w, are computed for a variety of generic bifurcations. In each case, the scars are semiclassically wider than those associated with isolated and unstable periodic orbits; moreover, their amplitude is at least as large, and in most cases larger. In this sense, bifurcations may be said to give rise to superscars. The competition between the contributions from different bifurcations to determine the moments of the averaged eigenfunction amplitude is analysed. We argue that there is a resulting universal hbar-scaling in the semiclassical asymptotics of these moments for irregular states in systems with a mixed phase-space dynamics. Finally, a number of these predictions are illustrated by numerical computations for a family of perturbed cat maps.Comment: 24 pages, 6 Postscript figures, corrected some typo

    Observing trajectories with weak measurements in quantum systems in the semiclassical regime

    Full text link
    We propose a scheme allowing to observe the evolution of a quantum system in the semiclassical regime along the paths generated by the propagator. The scheme relies on performing consecutive weak measurements of the position. We show how weak trajectories" can be extracted from the pointers of a series of measurement devices having weakly interacted with the system. The properties of these "weak trajectories" are investigated and illustrated in the case of a time-dependent model system.Comment: v2: Several minor corrections were made. Added Appendix (that will appear as Suppl. Material). To be published in Phys Rev Let

    Application of serious games to sport, health and exercise

    Get PDF
    Use of interactive entertainment has been exponentially expanded since the last decade. Throughout this 10+ year evolution there has been a concern about turning entertainment properties into serious applications, a.k.a "Serious Games". In this article we present two set of Serious Game applications, an Environment Visualising game which focuses solely on applying serious games to elite Olympic sport and another set of serious games that incorporate an in house developed proprietary input system that can detect most of the human movements which focuses on applying serious games to health and exercise
    corecore