13,534 research outputs found

    Placenta Ingestion Enhances Analgesia\ud Produced by Vaginal/Cervical\ud Stimulation in Rats

    Get PDF
    Ingestion of placenta has previously been shown to enhance opiate-mediated analgesia (measured as tail-flick latency) induced either by morphine injection or by footshock. The present study was designed to test whether placenta ingestion would enhance the partly opiate-mediated analgesia produced by vaginal/cervical stimulation. Nulliparous Sprague-Dawley rats were tested for analgesia, using tail-flick latency, during and after vaginal/cervical stimulation; the tests for vaginal/cervical stimulation-induced analgesia were administered both before and after the rats ate placenta or ground beef. Placenta ingestion, but not beef ingestion. significantly heightened vaginal/cervical stimulation-induced analgesia. A subsequent morphine injection provided evidence that, as in a previous report, placenta ingestion, but not beef ingestion, enhanced morphine-induced analgesia

    Star Formation in Dwarf Galaxies

    Get PDF
    We explore mechanisms for the regulation of star formation in dwarf galaxies. We concentrate primarily on a sample in the Virgo cluster, which has HI and blue total photometry, for which we collected Hα\alpha data at the Wise Observatory. We find that dwarf galaxies do not show the tight correlation of the surface brightness of Hα\alpha (a star formation indicator) with the HI surface density, or with the ratio of this density to a dynamical timescale, as found for large disk or starburst galaxies. On the other hand, we find the strongest correlation to be with the average blue surface brightness, indicating the presence of a mechanism regulating the star formation by the older (up to 1 Gyr) stellar population if present, or by the stellar population already formed in the present burst.Comment: 15 pages (LATEX aasms4 style) and three postscript figures, accepted for publication in the Astrophysical Journa

    Plasmid Injection and Application of Electric Pulses Alter Endogenous mRNA and Protein Expression in B16.F10 Mouse Melanomas

    Get PDF
    The application of electric pulses to tissues causes cell membrane destabilization, allowing exogenous molecules to enter the cells. This delivery technique can be used for plasmid gene therapy. Reporter gene expression after plasmid delivery with eight representative published protocols was compared in B16.F10 mouse melanoma tumors. This expression varied significantly based on the pulse parameters utilized for delivery. To observe the possible influence of plasmid injection and/or pulse application on endogenous gene expression, levels of stress-related mRNAs 4 and 24 h after delivery were determined by PCR array. Increases in mRNA levels for several inflammatory chemokines and cytokines were observed in response to plasmid injection, electric pulses alone or the combination. This upregulation was confirmed by individual real-time reverse transcription TaqMan PCR assays. Proteins were extracted at the same time points from identically treated tumors and inflammatory protein levels were assayed by enzyme-linked immunosorbent assay and by a custom multiplex bead array. Increases in inflammatory protein levels generally paralleled mRNA levels. Some differences were observed, which may have been due to differing expression kinetics. The observed upregulated expression of these cytokines and chemokines may aid or inhibit the therapeutic effectiveness of immune-based cancer gene therapies

    Localization of Eigenfunctions in the Stadium Billiard

    Full text link
    We present a systematic survey of scarring and symmetry effects in the stadium billiard. The localization of individual eigenfunctions in Husimi phase space is studied first, and it is demonstrated that on average there is more localization than can be accounted for on the basis of random-matrix theory, even after removal of bouncing-ball states and visible scars. A major point of the paper is that symmetry considerations, including parity and time-reversal symmetries, enter to influence the total amount of localization. The properties of the local density of states spectrum are also investigated, as a function of phase space location. Aside from the bouncing-ball region of phase space, excess localization of the spectrum is found on short periodic orbits and along certain symmetry-related lines; the origin of all these sources of localization is discussed quantitatively and comparison is made with analytical predictions. Scarring is observed to be present in all the energy ranges considered. In light of these results the excess localization in individual eigenstates is interpreted as being primarily due to symmetry effects; another source of excess localization, scarring by multiple unstable periodic orbits, is smaller by a factor of ℏ\sqrt{\hbar}.Comment: 31 pages, including 10 figure

    Invariant imbedding technique applied to the propagation of electromagnetic waves through inhomogeneous reentry plasmas

    Get PDF
    Invariant imbedding technique applied to electromagnetic wave propagation through inhomogeneous reentry plasma

    The Inhibition of Mixing in Chaotic Quantum Dynamics

    Full text link
    We study the quantum chaotic dynamics of an initially well-localized wave packet in a cosine potential perturbed by an external time-dependent force. For our choice of initial condition and with ℏ\hbar small but finite, we find that the wave packet behaves classically (meaning that the quantum behavior is indistinguishable from that of the analogous classical system) as long as the motion is confined to the interior of the remnant separatrix of the cosine potential. Once the classical motion becomes unbounded, however, we find that quantum interference effects dominate. This interference leads to a long-lived accumulation of quantum amplitude on top of the cosine barrier. This pinning of the amplitude on the barrier is a dynamic mechanism for the quantum inhibition of classical mixing.Comment: 20 pages, RevTeX format with 6 Postscript figures appended in uuencoded tar.Z forma

    Influenced of Fe buffer thickness on the crystalline quality and the transport properties of Fe/Ba(Fe1-xCox)2As2 bilayers

    Full text link
    The implementation of an Fe buffer layer is a promising way to obtain epitaxial growth of Co-doped BaFe2As2 (Ba-122). However, the crystalline quality and the superconducting properties of Co-doped Ba-122 are influenced by the Fe buffer layer thickness, dFe. The well-textured growth of the Fe/Ba-122 bilayer with dFe = 15 nm results in a high Jc of 0.45 MAcm−2^{-2} at 12 K in self-field, whereas a low Jc value of 61000 Acm−2^{-2} is recorded for the bilayer with dFe = 4 nm at the corresponding reduced temperature due to the presence of grain boundaries

    Intertwining technique for a system of difference Schroedinger equations and new exactly solvable multichannel potentials

    Full text link
    The intertwining operator technique is applied to difference Schroedinger equations with operator-valued coefficients. It is shown that these equations appear naturally when a discrete basis is used for solving a multichannel Schroedinger equation. New families of exactly solvable multichannel Hamiltonians are found

    What Is Your Neurologic Diagnosis?

    Get PDF
    • 

    corecore