322 research outputs found
Human Dispersal Out of Africa: A Lasting Debate
Unraveling the first migrations of anatomically modern humans out of Africa has invoked great interest among researchers from a wide range of disciplines. Available fossil, archeological, and climatic data offer many hypotheses, and as such genetics, with the advent of genome-wide genotyping and sequencing techniques and an increase in the availability of ancient samples, offers another important tool for testing theories relating to our own history. In this review, we report the ongoing debates regarding how and when our ancestors left Africa, how many waves of dispersal there were and what geographical routes were taken. We explore the validity of each, using current genetic literature coupled with some of the key archeological findings
Unravelling the hidden ancestry of American admixed populations
The movement of people into the Americas has brought different populations into contact, and contemporary American genomes are the product of a range of complex admixture events. Here we apply a haplotype-based ancestry identification approach to a large set of genome-wide SNP data from a variety of American, European and African populations to determine the contributions of different ancestral populations to the Americas. Our results provide a fine-scale characterization of the source populations, identify a series of novel, previously unreported contributions from Africa and Europe and highlight geohistorical structure in the ancestry of American admixed populations
Dissecting human North African gene-flow into its western coastal surroundings
North African history and populations have exerted a pivotal influence on surrounding geographical regions, although scant genetic studies have addressed this issue. Our aim is to understand human historical migrations in the coastal surroundings of North Africa. We built a refined genome-wide dataset of North African populations to unearth the fine-scale genetic structure of the region, using haplotype information. The results suggest that the gene-flow from North Africa into the European Mediterranean coast (Tuscany and the Iberian Peninsula) arrived mainly from the Mediterranean coast of North Africa. In Tuscany, this North African admixture date estimate suggests the movement of peoples during the fall of the Roman Empire around the fourth century. In the Iberian Peninsula, the North African component probably reflects the impact of the Arab expansion since the seventh century and the subsequent expansion of the Christian Kingdoms. By contrast, the North African component in the Canary Islands has a source genetically related to present-day people from the Atlantic North African coast. We also find sub-Saharan gene-flow from the Senegambia region in the Canary Islands. Specifically, we detect a complex signal of admixture involving Atlantic, Senegambian and European sources intermixing around the fifteenth century, soon after the Castilian conquest. Our results highlight the differential genetic influence of North Africa into the surrounding coast and show that specific historical events have not only had a socio-cultural impact but additionally modified the gene pool of the populations
Insular Celtic population structure and genomic footprints of migration
Previous studies of the genetic landscape of Ireland have suggested homogeneity, with population substructure undetectable using single-marker methods. Here we have harnessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP dataset, identifying 23 discrete genetic clusters which segregate with geographical provenance. Cluster diversity is pronounced in the west of Ireland but reduced in the east where older structure has been eroded by historical migrations. Accordingly, when populations from the neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is revealed along with a particularly striking correlation between haplotypes and geography across both islands. A strong relationship is revealed between subsets of Northern Irish and Scottish populations, where discordant genetic and geographic affinities reflect major migrations in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely reflects older strata of communication across the narrowest inter-island crossing. Using GLOBETROTTER we detected Irish admixture signals from Britain and Europe and estimated dates for events consistent with the historical migrations of the Norse-Vikings, the Anglo-Normans and the British Plantations. The influence of the former is greater than previously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic landscape of Ireland, revealing structure which should be considered in the design of studies examining rare genetic variation and its association with traits
Evidence for a Common Origin of Blacksmiths and Cultivators in the Ethiopian Ari within the Last 4500 Years: Lessons for Clustering-Based Inference.
The Ari peoples of Ethiopia are comprised of different occupational groups that can be distinguished genetically, with Ari Cultivators and the socially marginalised Ari Blacksmiths recently shown to have a similar level of genetic differentiation between them (FST ≈ 0.023 - 0.04) as that observed among multiple ethnic groups sampled throughout Ethiopia. Anthropologists have proposed two competing theories to explain the origins of the Ari Blacksmiths as (i) remnants of a population that inhabited Ethiopia prior to the arrival of agriculturists (e.g. Cultivators), or (ii) relatively recently related to the Cultivators but presently marginalized in the community due to their trade. Two recent studies by different groups analysed genome-wide DNA from samples of Ari Blacksmiths and Cultivators and suggested that genetic patterns between the two groups were more consistent with model (i) and subsequent assimilation of the indigenous peoples into the expanding agriculturalist community. We analysed the same samples using approaches designed to attenuate signals of genetic differentiation that are attributable to allelic drift within a population. By doing so, we provide evidence that the genetic differences between Ari Blacksmiths and Cultivators can be entirely explained by bottleneck effects consistent with hypothesis (ii). This finding serves as both a cautionary tale about interpreting results from unsupervised clustering algorithms, and suggests that social constructions are contributing directly to genetic differentiation over a relatively short time period among previously genetically similar groups
A genetic atlas of human admixture history
Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations
The genetic history of Greenlandic-European contact.
The Inuit ancestors of the Greenlandic people arrived in Greenland close to 1,000 years ago.1 Since then, Europeans from many different countries have been present in Greenland. Consequently, the present-day Greenlandic population has ∼25% of its genetic ancestry from Europe.2 In this study, we investigated to what extent different European countries have contributed to this genetic ancestry. We combined dense SNP chip data from 3,972 Greenlanders and 8,275 Europeans from 14 countries and inferred the ancestry contribution from each of these 14 countries using haplotype-based methods. Due to the rapid increase in population size in Greenland over the past ∼100 years, we hypothesized that earlier European interactions, such as pre-colonial Dutch whalers and early German and Danish-Norwegian missionaries, as well as the later Danish colonists and post-colonial immigrants, all contributed European genetic ancestry. However, we found that the European ancestry is almost entirely Danish and that a substantial fraction is from admixture that took place within the last few generations
The genetic history of Greenlandic-European contact
The Inuit ancestors of the Greenlandic people arrived in Greenland close to 1,000 years ago.1 Since then, Europeans from many different countries have been present in Greenland. Consequently, the present-day Greenlandic population has ∼25% of its genetic ancestry from Europe.2 In this study, we investigated to what extent different European countries have contributed to this genetic ancestry. We combined dense SNP chip data from 3,972 Greenlanders and 8,275 Europeans from 14 countries and inferred the ancestry contribution from each of these 14 countries using haplotype-based methods. Due to the rapid increase in population size in Greenland over the past ∼100 years, we hypothesized that earlier European interactions, such as pre-colonial Dutch whalers and early German and Danish-Norwegian missionaries, as well as the later Danish colonists and post-colonial immigrants, all contributed European genetic ancestry. However, we found that the European ancestry is almost entirely Danish and that a substantial fraction is from admixture that took place within the last few generations
- …