19 research outputs found

    History and highlights of the teratological collection in the Narrenturm, Vienna (Austria)

    No full text
    The collection of the Narrenturm in Vienna houses and maintains more than 50,000 objects including approximately 1200 teratological specimens; making it one of the biggest collections of specimens from human origin in Europe. The existence of this magnificent collection―representing an important resource for dysmorphology research, mostly awaiting contemporary diagnoses―is not widely known in the scientific community. Here, we show that the Narrenturm harbors a wealth of specimens with (exceptionally) rare congenital anomalies. These museums can be seen as physical repositories of human malformation, covering hundreds of years of dedicated collecting and preserving, thereby creating unique settings that can be used to expand our knowledge of developmental conditions that have to be preserved for future generations of scientists

    American Journal of Medical Genetics Part A / Piepkorn type of osteochondrodysplasia : defining the severe end of FLNB-related skeletal disorders in three fetuses and a 106-year-old exhibit

    No full text
    The Piepkorn type of lethal osteochondrodysplasia (POCD) is a rare and lethal dwarfing condition. Four cases have been reported to date. The characteristic features are distinctly shortened “flipperlike” limbs, polysyndactyly, excessive underossification, especially of the limb bones and vertebrae, and large (giant) chondrocytes in the cartilaginous bone primordia. These characteristics allowed the diagnosis of Piepkorn type of osteochondrodysplasia in four new cases, three fetuses of 15 to 22 weeks and one 106yearold museum exhibit. Piepkorn type of osteochondrodysplasia has been assigned to the giant cell chondrodysplasias such as atelosteogenesis type 1 (AO1) and boomerang dysplasia (BD). Analysis of the Filamin B gene in 3p14.3, which is associated with these disorders, allowed the identification of the first FLNB mutations in Piepkorn type of osteochondrodysplasia. The heterozygous missense mutations, found in the three fetuses, were located in exons 28 and 29, encoding the immunoglobulinlike repeat region R15, one of three mutational hot spots in dominant FLNBrelated skeletal disorders. Direct preparations and alcian blue staining revealed single upper and lower arm and leg bone primordia, preaxial oligodactyly, and polysyndactyly with complete fusion and doubling of the middle and end phalanges IIV to produce eight distal finger rays. Considering the unique clinical features and the extent of underossification, Piepkorn type of osteochondrodysplasia can be regarded as a distinct entity within the AO1BDPOCD continuum.(VLID)340141

    Prenatal phenotype of PNKP-related primary microcephaly associated with variants affecting both the FHA and phosphatase domain

    No full text
    Biallelic PNKP variants cause heterogeneous disorders ranging from neurodevelopmental disorder with microcephaly/seizures to adult-onset Charcot-Marie-Tooth disease. To date, only postnatal descriptions exist. We present the first prenatal diagnosis of PNKP-related primary microcephaly. Pathological examination of a male fetus in the 18th gestational week revealed micrencephaly with extracerebral malformations and thus presumed syndromic microcephaly. A recessive disorder was suspected because of previous pregnancy termination for similar abnormalities. Prenatal trio-exome sequencing identified compound heterozygosity for the PNKP variants c.498G>A, p.[(=),0?] and c.302C>T, p.(Pro101Leu). Segregation confirmed both variants in the sister fetus. Through RNA analyses, we characterized exon 4 skipping affecting the PNKP forkhead-associated (FHA) and phosphatase domains (p.Leu67_Lys166del) as the predominant effect of the paternal c.498G>A variant. We retrospectively investigated two unrelated individuals diagnosed with biallelic PNKP-variants to compare prenatal/postnatal phenotypes. Both carry the splice donor variant c.1029+2T>C in trans with a variant in the FHA domain (c.311T>C, p.(Leu104Pro); c.151G>C, p.(Val51Leu)). RNA-seq showed complex splicing for c.1029+2T>C and c.151G>C. Structural modeling revealed significant clustering of missense variants in the FHA domain with variants generating structural damage. Our clinical description extends the PNKP-continuum to the prenatal stage. Investigating possible PNKP-variant effects using RNA and structural modeling, we highlight the mutational complexity and exemplify a PNKP-variant characterization framework
    corecore