118 research outputs found

    Infinite barbarians

    Get PDF
    This paper discusses an infinite regress that looms behind a certain kind of historical explanation. The movement of one barbarian group is often explained by the movement of others, but those movements in turn call for an explanation. While their explanation can again be the movement of yet another group of barbarians, if this sort of explanation does not stop somewhere we are left with an infinite regress of barbarians. While that regress would be vicious, it cannot be accommodated by several general views about what viciousness in infinite regresses amounts to. This example is additional evidence that we should prefer a pluralist approach to infinite regresses

    3D Stress Fields Versus Void Distributions Ahead of a Notch Tip for Semi-crystalline Polymers

    Get PDF
    The creep durability of engineering structures relies on the theory of Fracture Mechanics for Creeping Solids (FMCS). The studied material is a semi-crystalline polymer. The lifespan of plastic pipes being generally specified in terms of years of service, its prediction requires reliable constitutive models accounting for time dependent deformation under multiaxial stress states and failure criteria based on the mechanisms of damage and failure. Here, an experimental approach was developed so as to analyze the mechanisms of deformation and cavitation at the microstructural scale by using 3D imaging (tomography/laminography). Three stress triaxiality ratios were addressed using various notched specimen geometries. The void characteristic dimensions (volume fraction, height and diameter) were then measured by defining a volume of interest. The spatial distributions of these characteristics at a prescribed creep time were observed to be dependent on the stress triaxiality ratio. A finite element constitutive model using the porosity as an internal variable, was selected. Comparison of the multiscale experimental database with those simulated at the macroscopic scale as well as at the microstructure level was satisfactory. In the light of the finite element results, the principal stress singularities were in good agreement with the void characteristic lengths

    Multi-contrast computed laminography at ANKA light source

    Get PDF
    X-ray computed laminography has been developed as a non-destructive imaging technique for inspecting laterally extended objects. Benefiting from a parallel-beam geometry, high photon flux of synchrotron sources and modern high-resolution detector systems, synchrotron radiation computed laminography (SRCL) results in a powerful three-dimensional microscopy technique. SRCL can be combined with different contrast modes, such as absorption, phase and dark-field contrasts, in order to provide complementary information for the same specimen. Here we show the development of SRCL at the TopoTomo beamline of the ANKA light source. A novel instrumentation design is reported and compared to the existing one. For this design, experimental results from different contrast modalities are shown

    Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation

    Get PDF
    In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value

    In vivo imaging of microenvironmental and anti-PD-L1-mediated dynamics in cancer using S100A8/S100A9 as an imaging biomarker

    Get PDF
    Purpose: As a promotor of tumor invasion and tumor microenvironment (TME) formation, the protein complex S100A8/S100A9 is associated with poor prognosis. Our aim was to further evaluate its origin and regulatory effects, and to establish an imaging biomarker for TME activity. Methods: S100A9−/−cells (ko) were created from syngeneic murine breast cancer 4T1 (high malignancy) and 67NR (low malignancy) wildtype (wt) cell lines and implanted into either female BALB/c wildtype or S100A9−/− mice (n = 10 each). Anti-S100A9-Cy5.5-targeted fluorescence reflectance imaging was performed at 0 h and 24 h after injection. Potential early changes of S100A9-presence under immune checkpoint inhibition (anti-PD-L1, n = 7 vs. rat IgG2b as isotype control, n = 3) were evaluated. Results: In S100A9−/−mice contrast-to-noise-ratios were significantly reduced for wt and S100A9−/−tumors. No significant differences were detected for 4T1 ko and 67NR ko cells as compared to wildtype cells. Under anti-PD-L1 treatment S100A9 presence significantly decreased compared with the control group. Conclusion: Our results confirm a secretion of S100A8/S100A9 by the TME, while tumor cells do not apparently release the protein. Under immune checkpoint inhibition S100A9-imaging reports an early decrease of TME activity. Therefore, S100A9-specific imaging may serve as an imaging biomarker for TME formation and activity

    Compact and versatile neutron imaging detector with sub 4 mu m spatial resolution based on a single crystal thin film scintillator

    Get PDF
    A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 Eu scintillator, which provides an isotropic sub 4 amp; 8201; m true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in operando testing, as briefly exemplified her

    Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development

    Get PDF
    Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (Îź-XRF) imaging. Many elements showed highest accumulation in the retinal pigment epithelium (RPE) of the zebrafish embryo. Knockdown of the zebrafish brown locus homologues tyrp1a/b eliminated accumulation of these elements in the RPE, indicating that they are bound by mature melanosomes. Furthermore, albino (slc45a2) mutants, which completely lack melanosomes, developed abnormal lens reflections similar to the congenital cataract caused by mutation of the myosin chaperon Unc45b, and an in situ spin trapping assay revealed increased oxidative stress in the lens of albino mutants. Finally transplanting a wildtype lens into an albino mutant background resulted in cataract formation. These data suggest that melanosomes in pigment epithelial cells protect the lens from oxidative stress during embryonic development, likely by buffering trace elements

    Gauging low-dose X-ray phase-contrast imaging at a single and large propagation distance

    Get PDF
    The interactions of a beam of hard and spatio-temporally coherent X-rays with a soft-matter sample primarily induce a transverse distribution of exit phase variations δϕ (retardations or advancements in pieces of the wave front exiting the object compared to the incoming wave front) whose free-space propagation over a distance z gives rise to intensity contrast gz. For single-distance image detection and |δϕ| ≪ 1 all-order-in-z phase-intensity contrast transfer is linear in δϕ. Here we show that ideal coherence implies a decay of the (shot-)noise-to-signal ratio in gz and of the associated phase noise as z−1/2 and z−1, respectively. Limits on X-ray dose thus favor large values of z. We discuss how a phase-scaling symmetry, exact in the limit δϕ → 0 and dynamically unbroken up to |δϕ| ∼ 1, suggests a filtering of gz in Fourier space, preserving non-iterative quasi-linear phase retrieval for phase variations up to order unity if induced by multi-scale objects inducing phase variations δϕ of a broad spatial frequency spectrum. Such an approach continues to be applicable under an assumed phase-attenuation duality. Using synchrotron radiation, ex and in vivo microtomography on frog embryos exemplifies improved resolution compared to a conventional single-distance phase-retrieval algorithm
    • …
    corecore