15 research outputs found

    Accelerating development of engineered T cell therapies in the EU: current regulatory framework for studying multiple product versions and T2EVOLVE recommendations

    Get PDF
    To accelerate the development of Advanced Therapy Medicinal Products (ATMPs) for patients suffering from life-threatening cancer with limited therapeutic options, regulatory approaches need to be constantly reviewed, evaluated and adjusted, as necessary. This includes utilizing science and risk-based approaches to mitigate and balance potential risks associated with early clinical research and a more flexible manufacturing paradigm. In this paper, T2EVOLVE an Innovative Medicine Initiative (IMI) consortium explores opportunities to expedite the development of CAR and TCR engineered T cell therapies in the EU by leveraging tools within the existing EU regulatory framework to facilitate an iterative and adaptive learning approach across different product versions with similar design elements or based on the same platform technology. As understanding of the linkage between product quality attributes, manufacturing processes, clinical efficacy and safety evolves through development and post licensure, opportunities are emerging to streamline regulatory submissions, optimize clinical studies and extrapolate data across product versions reducing the need to perform duplicative studies. It is worth noting that this paper is focusing on CAR- and TCR-engineered T cell therapies but the concepts may be applied more broadly to engineered cell therapy products (e.g., CAR NK cell therapy products)

    Lymphodepletion – an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle

    Get PDF
    Lymphodepletion (LD) or conditioning is an essential step in the application of currently used autologous and allogeneic chimeric antigen receptor T-cell (CAR-T) therapies as it maximizes engraftment, efficacy and long-term survival of CAR-T. Its main modes of action are the depletion and modulation of endogenous lymphocytes, conditioning of the microenvironment for improved CAR-T expansion and persistence, and reduction of tumor load. However, most LD regimens provide a broad and fairly unspecific suppression of T-cells as well as other hematopoietic cells, which can also lead to severe side effects, particularly infections. We reviewed 1271 published studies (2011-2023) with regard to current LD strategies for approved anti-CD19 CAR-T products for large B cell lymphoma (LBCL). Fludarabine (Flu) and cyclophosphamide (Cy) (alone or in combination) were the most commonly used agents. A large number of different schemes and combinations have been reported. In the respective schemes, doses of Flu and Cy (range 75-120mg/m2 and 750-1.500mg/m2) and wash out times (range 2-5 days) differed substantially. Furthermore, combinations with other agents such as bendamustine (benda), busulfan or alemtuzumab (for allogeneic CAR-T) were described. This diversity creates a challenge but also an opportunity to investigate the impact of LD on cellular kinetics and clinical outcomes of CAR-T. Only 21 studies explicitly investigated in more detail the influence of LD on safety and efficacy. As Flu and Cy can potentially impact both the in vivo activity and toxicity of CAR-T, a more detailed analysis of LD outcomes will be needed before we are able to fully assess its impact on different T-cell subsets within the CAR-T product. The T2EVOLVE consortium propagates a strategic investigation of LD protocols for the development of optimized conditioning regimens

    Interaction of a Densovirus with Glycans of the Peritrophic Matrix Mediates Oral Infection of the Lepidopteran Pest Spodoptera frugiperda

    Get PDF
    The success of oral infection by viruses depends on their capacity to overcome the gut epithelial barrier of their host to crossing over apical, mucous extracellular matrices. As orally transmitted viruses, densoviruses, are also challenged by the complexity of the insect gut barriers, more specifically by the chitinous peritrophic matrix, that lines and protects the midgut epithelium; how capsids stick to and cross these barriers to reach their final cell destination where replication goes has been poorly studied in insects. Here, we analyzed the early interaction of the Junonia coenia densovirus (JcDV) with the midgut barriers of caterpillars from the pest Spodoptera frugiperda. Using combination of imaging, biochemical, proteomic and transcriptomic analyses, we examined in vitro, ex vivo and in vivo the early interaction of the capsids with the peritrophic matrix and the consequence of early oral infection on the overall gut function. We show that the JcDV particle rapidly adheres to the peritrophic matrix through interaction with different glycans including chitin and glycoproteins, and that these interactions are necessary for oral infection. Proteomic analyses of JcDV binding proteins of the peritrophic matrix revealed mucins and non-mucins proteins including enzymes already known to act as receptors for several insect pathogens. In addition, we show that JcDV early infection results in an arrest of N-Acetylglucosamine secretion and a disruption in the integrity of the peritrophic matrix, which may help viral particles to pass through. Finally, JcDV early infection induces changes in midgut genes expression favoring an increased metabolism including an increased translational activity. These dysregulations probably participate to the overall dysfunction of the gut barrier in the early steps of viral pathogenesis. A better understanding of early steps of densovirus infection process is crucial to build biocontrol strategies against major insect pests

    The impact of open pollination on the structural evolutionary dynamics, meiotic behavior, and fertility of resynthesized allotetraploid Brassica napus L.

    No full text
    International audienceAllopolyploidy, which results from the merger and duplication of two divergent genomes, has played a major role in the evolution and diversification of flowering plants. The genomic changes that occur in resynthesized or natural neopolyploids have been extensively studied, but little is known about the effects of the reproductive mode in the initial generations that may precede its successful establishment. To truly reflect the early generations of a nascent polyploid, two resynthesized allotetraploid Brassica napus populations were obtained for the first time by open pollination. In these populations, we detected a much lower level of aneuploidy (third generation) compared with those previously published populations obtained by controlled successive selfing. We specifically studied 33 resynthesized B. napus individuals from our two open pollinated populations, and showed that meiosis was affected in both populations. Their genomes were deeply shuffled after allopolyploidization: up to 8.5 and 3.5% of the C and A subgenomes were deleted in only two generations. The identified deletions occurred mainly at the distal part of the chromosome, and to a significantly greater extent on the C rather than the A subgenome. Using Fluorescent In Situ Hybridization (BAC-FISH), we demonstrated that four of these deletions corresponded to fixed translocations (via homeologous exchanges). We were able to evaluate the size of the structural variations and their impact on the whole genome size, gene content, and allelic diversity. In addition, the evolution of fertility was assessed, to better understand the difficulty encountered by novel polyploid individuals before the putative formation of a novel stable species

    Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease

    No full text
    BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising alpha- and gamma-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of gamma-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF.METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment.RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.5%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period.CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656)

    Pediatr Obes

    No full text
    BACKGROUND: The nine French regional health networks for the prevention and care of paediatric obesity offer a 2-year program of multidisciplinary primary care (medical, dietetical, psychological, adapted physical activity) based on multicomponent lifestyle interventions. OBJECTIVES: To assess the short-term and long-term impact of care management. METHODS: The impact of the multidisciplinary care was assessed by changes in the body mass index (BMI) Z score during the period of the care, and at least 2 years after the end. Anthropometric data were collected at baseline and at the end of the care either through a digital medical file or through direct phone contacts with the referring. Long-term outcomes were assessed through studies relative to post follow-up evaluation. RESULTS: At the end of the period of the care in a network, 72.9% of 6947 children had decreased their BMI Z score from 3.6 +/- 1.0 DS at baseline to 3.3 +/- 1.1 DS at the end. The four studies relative to long-term evaluation showed a pursuit of the decrease of BMI Z score during the 5.1 years after the beginning of the care. CONCLUSIONS: The care provided by regional French networks for prevention and care of paediatric obesity induce a reduction of BMI that continues afterwards

    Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer.

    No full text
    International audienceCytotoxic chemotherapy is ineffective in metastatic renal cancer. However, systemic administration of interleukin 2 (IL-2) or infusion of dendritic cells (DCs) loaded with tumor extracts can lead to some response rates with concomitant survival improvements. We report the results of a phase I-II pilot study combining DCs and IL-2 where six patients were included. DCs were derived from bone marrow CD34+ cells and loaded with autologous tumor extracts. CD34-DC vaccines were infused subcutaneously at day 45, 52, 59, 90 and 120 following surgery in combination with IL-2, that was subsequently administrated after the 3rd and 4th DC vaccinations. Preparation of tumor extracts and CD34-DCs were satisfactory in all patients but one. Due to rapid tumor progression, one patient was excluded before vaccination. In the 4 remaining patients, two received 3 vaccinations, while the 2 others received 5 vaccinations and the full IL-2 treatment. No adverse effect due to the vaccinations was observed. A specific immune response against autologous tumor cells was observed in the 2 patients who completed the treatment. Interestingly, these 2 patients had a more prolonged survival than the patients receiving 3 vaccinations. Importantly, a transient and massive increase of circulating natural regulatory T-cells (nTregs) was evidenced in 3 patients following IL-2 administration. Overall, the use of CD34-DC vaccines is feasible, safe and non-toxic. A specific anti-tumor immune response can be detected. However, our data highlights that IL-2 is a potent inducer of nTregs in vivo and as such may have a negative impact on cancer immunotherapy

    Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer.

    No full text
    International audienceCytotoxic chemotherapy is ineffective in metastatic renal cancer. However, systemic administration of interleukin 2 (IL-2) or infusion of dendritic cells (DCs) loaded with tumor extracts can lead to some response rates with concomitant survival improvements. We report the results of a phase I-II pilot study combining DCs and IL-2 where six patients were included. DCs were derived from bone marrow CD34+ cells and loaded with autologous tumor extracts. CD34-DC vaccines were infused subcutaneously at day 45, 52, 59, 90 and 120 following surgery in combination with IL-2, that was subsequently administrated after the 3rd and 4th DC vaccinations. Preparation of tumor extracts and CD34-DCs were satisfactory in all patients but one. Due to rapid tumor progression, one patient was excluded before vaccination. In the 4 remaining patients, two received 3 vaccinations, while the 2 others received 5 vaccinations and the full IL-2 treatment. No adverse effect due to the vaccinations was observed. A specific immune response against autologous tumor cells was observed in the 2 patients who completed the treatment. Interestingly, these 2 patients had a more prolonged survival than the patients receiving 3 vaccinations. Importantly, a transient and massive increase of circulating natural regulatory T-cells (nTregs) was evidenced in 3 patients following IL-2 administration. Overall, the use of CD34-DC vaccines is feasible, safe and non-toxic. A specific anti-tumor immune response can be detected. However, our data highlights that IL-2 is a potent inducer of nTregs in vivo and as such may have a negative impact on cancer immunotherapy
    corecore