6 research outputs found

    The role and uses of antibodies in COVID-19 infections: a living review

    Get PDF
    Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity

    T cell phenotypes in COVID-19 - a living review

    Get PDF
    COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients’ long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation

    Molecular components of the circadian clock regulate HIV-1 replication

    No full text
    Summary: Human immunodeficiency virus 1 (HIV-1) causes major health burdens worldwide and still lacks curative therapies and vaccines. Circadian rhythms are endogenous daily oscillations that coordinate an organism’s response to its environment and invading pathogens. Peripheral viral loads of HIV-1 infected patients show diurnal variation; however, the underlying mechanisms remain unknown. Here, we demonstrate a role for the cell-intrinsic clock to regulate rhythmic HIV-1 replication in circadian-synchronized systems. Silencing the circadian activator Bmal1 abolishes this phenotype, and we observe BMAL1 binding to the HIV-1 promoter. Importantly, we show differential binding of the nuclear receptors REV-ERB and ROR to the HIV-long terminal repeat at different circadian times, demonstrating a dynamic interplay in time-of-day regulation of HIV-1 transcription. Bioinformatic analysis shows circadian regulation of host factors that control HIV-1 replication, providing an additional mechanism for rhythmic viral replication. This study increases our understanding of the circadian regulation of HIV-1, which can ultimately inform new therapies

    Hypoxia inducible factors regulate hepatitis B virus replication by activating the basal core promoter

    No full text
    PMC8214165BACKGROUND & AIMS: Hypoxia inducible factors (HIFs) are a hallmark of inflammation and are key regulators of hepatic immunity and metabolism, yet their role in HBV replication is poorly defined. HBV replicates in hepatocytes within the liver, a naturally hypoxic organ, however most studies of viral replication are performed under conditions of atmospheric oxygen, where HIFs are inactive. We therefore investigated the role of HIFs in regulating HBV replication. METHODS: Using cell culture, animal models, human tissue and pharmacological agents inhibiting the HIF-prolyl hydroxylases, we investigated the impact of hypoxia on the HBV life cycle. RESULTS: Culturing liver cell-based model systems under low oxygen uncovered a new role for HIFs in binding HBV DNA and activating the basal core promoter, leading to increased pre-genomic RNA and de novo HBV particle secretion. The presence of hypoxia responsive elements among all primate members of the hepadnaviridae highlights an evolutionary conserved role for HIFs in regulating this virus family. CONCLUSIONS: Identifying a role for this conserved oxygen sensor in regulating HBV transcription suggests that this virus has evolved to exploit the HIF signaling pathway to persist in the low oxygen environment of the liver. Our studies show the importance of considering oxygen availability when studying HBV-host interactions and provide innovative routes to better understand and target chronic HBV infection. LAY SUMMARY: Viral replication in host cells is defined by the cellular microenvironment and one key factor is local oxygen tension. Hepatitis B virus (HBV) replicates in the liver, a naturally hypoxic organ. Hypoxia inducible factors (HIFs) are the major sensors of low oxygen; herein, we identify a new role for these factors in regulating HBV replication, revealing new therapeutic targets

    Hypoxia inducible factors inhibit respiratory syncytial virus infection by modulation of nucleolin expression

    No full text
    Summary: Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen

    The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells

    No full text
    PMC8443536The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2
    corecore