29 research outputs found

    The effects of antenatal depression and antidepressant treatment on placental gene expression

    Get PDF
    The effects of antenatal depression and antidepressant treatment during pregnancy on both mother and child are vigorously studied, but the underlying biology for these effects is largely unknown. The placenta plays a crucial role in the growth and development of the fetus. We performed a gene expression study on the fetal side of the placenta to investigate gene expression patterns in mothers with antenatal depression and in mothers using antidepressant treatment during pregnancy. Placental samples from mothers with normal pregnancies, from mothers with antenatal depression, and from mothers using antidepressants were collected. We performed a pilot microarray study to investigate alterations in the gene expression and selected several genes from the microarray for biological validation with qPCR in a larger sample. In mothers with antenatal depression 108 genes were differentially expressed, whereas 109 genes were differentially expressed in those using antidepressants. Validation of the microarray revealed more robust gene expression differences in the seven genes picked for confirmation in antidepressant-treated women than in depressed women. Among the genes that were validated ROCK2 and C12orf39 were differentially expressed in both depressed and antidepressant-treated women, whereas ROCK1, GCC2, KTN1, and DNM1L were only differentially expressed in the antidepressant-treated women. In conclusion, antenatal depression and antidepressant exposure during pregnancy are associated with altered gene expression in the placenta. Findings on those genes picked for validation were more robust among antidepressant-treated women than in depressed women, possibly due to the fact that depression is a multifactorial condition with varying degrees of endocrine disruption. It remains to be established whether the alterations found in the gene expression of the placenta are found in the fetus as well

    The Effects of SSRI Treatment on Human Placenta and Embryo

    No full text
    During pregnancy, 4 - 7% of women suffer from major depressive disorder. When antidepressive treatment is needed, selective serotonin reuptake inhibitors (SSRIs) are the most commonly used. Although severe complications from SSRI treatment are rare, association with a number of adverse pregnancy and fetal outcomes has been found. Also, antenatal depression per se has been shown to affect pregnancy outcomes. The overall aim of this thesis was to examine the effects of SSRIs on human placenta and embryo. In the first study, gene expression was investigated in placenta from depressed, SSRI-treated and healthy pregnant women, using microarray analysis. Antenatal depression and SSRI treatment induced alterations in gene expression, but only 20 genes in common were noted. Validation with qRT-PCR showed that six out of seven selected genes were altered in SSRI-treated women compared with controls, and two genes were altered between depressed women and controls. In study two, the protein levels in placenta from depressed, SSRI-treated and healthy pregnant women were investigated, focusing on the NGF signaling pathway. NGF, phosphorylated Raf-1, ROCK2 and phosphorylated ROCK2, were altered in both SSRI-treated and depressed women, although the proteins were regulated differently in the two groups. In the third study, human embryos were treated with fluoxetine. Embryo development and protein expression were studied. Fluoxetine had some effect on the timing of embryo developmental stages. Also, several proteins were uniquely found in fluoxetine-treated embryos compared with untreated embryos. Fluoxetine also altered the levels of proteins secreted from the embryo. In the fourth study, the human neuroblastoma cell line SH-SY5Y/TrkA was treated with TPA and NGF. The activation of Raf-1 was investigated and the involvement of Ras and PKC was studied. Both NGF and TPA activated Raf-1, but to a different extent and via different pathways. The NGF-induced activation of Raf-1 was mediated via Ras, while TPA induced signaling via PKC. In conclusion, SSRI treatment and antenatal depression influence placental gene and protein expression. These findings may affect placental development and function, which in turn could affect fetal development. Also, direct exposure of embryos to fluoxetine has some effects on embryo development and protein expression, which may affect the development of the fetus

    The Effects of SSRI Treatment on Human Placenta and Embryo

    No full text
    During pregnancy, 4 - 7% of women suffer from major depressive disorder. When antidepressive treatment is needed, selective serotonin reuptake inhibitors (SSRIs) are the most commonly used. Although severe complications from SSRI treatment are rare, association with a number of adverse pregnancy and fetal outcomes has been found. Also, antenatal depression per se has been shown to affect pregnancy outcomes. The overall aim of this thesis was to examine the effects of SSRIs on human placenta and embryo. In the first study, gene expression was investigated in placenta from depressed, SSRI-treated and healthy pregnant women, using microarray analysis. Antenatal depression and SSRI treatment induced alterations in gene expression, but only 20 genes in common were noted. Validation with qRT-PCR showed that six out of seven selected genes were altered in SSRI-treated women compared with controls, and two genes were altered between depressed women and controls. In study two, the protein levels in placenta from depressed, SSRI-treated and healthy pregnant women were investigated, focusing on the NGF signaling pathway. NGF, phosphorylated Raf-1, ROCK2 and phosphorylated ROCK2, were altered in both SSRI-treated and depressed women, although the proteins were regulated differently in the two groups. In the third study, human embryos were treated with fluoxetine. Embryo development and protein expression were studied. Fluoxetine had some effect on the timing of embryo developmental stages. Also, several proteins were uniquely found in fluoxetine-treated embryos compared with untreated embryos. Fluoxetine also altered the levels of proteins secreted from the embryo. In the fourth study, the human neuroblastoma cell line SH-SY5Y/TrkA was treated with TPA and NGF. The activation of Raf-1 was investigated and the involvement of Ras and PKC was studied. Both NGF and TPA activated Raf-1, but to a different extent and via different pathways. The NGF-induced activation of Raf-1 was mediated via Ras, while TPA induced signaling via PKC. In conclusion, SSRI treatment and antenatal depression influence placental gene and protein expression. These findings may affect placental development and function, which in turn could affect fetal development. Also, direct exposure of embryos to fluoxetine has some effects on embryo development and protein expression, which may affect the development of the fetus

    The Effects of SSRI Treatment on Human Placenta and Embryo

    No full text
    During pregnancy, 4 - 7% of women suffer from major depressive disorder. When antidepressive treatment is needed, selective serotonin reuptake inhibitors (SSRIs) are the most commonly used. Although severe complications from SSRI treatment are rare, association with a number of adverse pregnancy and fetal outcomes has been found. Also, antenatal depression per se has been shown to affect pregnancy outcomes. The overall aim of this thesis was to examine the effects of SSRIs on human placenta and embryo. In the first study, gene expression was investigated in placenta from depressed, SSRI-treated and healthy pregnant women, using microarray analysis. Antenatal depression and SSRI treatment induced alterations in gene expression, but only 20 genes in common were noted. Validation with qRT-PCR showed that six out of seven selected genes were altered in SSRI-treated women compared with controls, and two genes were altered between depressed women and controls. In study two, the protein levels in placenta from depressed, SSRI-treated and healthy pregnant women were investigated, focusing on the NGF signaling pathway. NGF, phosphorylated Raf-1, ROCK2 and phosphorylated ROCK2, were altered in both SSRI-treated and depressed women, although the proteins were regulated differently in the two groups. In the third study, human embryos were treated with fluoxetine. Embryo development and protein expression were studied. Fluoxetine had some effect on the timing of embryo developmental stages. Also, several proteins were uniquely found in fluoxetine-treated embryos compared with untreated embryos. Fluoxetine also altered the levels of proteins secreted from the embryo. In the fourth study, the human neuroblastoma cell line SH-SY5Y/TrkA was treated with TPA and NGF. The activation of Raf-1 was investigated and the involvement of Ras and PKC was studied. Both NGF and TPA activated Raf-1, but to a different extent and via different pathways. The NGF-induced activation of Raf-1 was mediated via Ras, while TPA induced signaling via PKC. In conclusion, SSRI treatment and antenatal depression influence placental gene and protein expression. These findings may affect placental development and function, which in turn could affect fetal development. Also, direct exposure of embryos to fluoxetine has some effects on embryo development and protein expression, which may affect the development of the fetus

    Blood-based cerebral biomarkers in preeclampsia : Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - A nested case control study

    Get PDF
    Objective To evaluate if concentrations of the neuronal proteins neurofilament light chain and tau are changed in women developing preeclampsia and to evaluate the ability of a combination of neurofilament light chain, tau, S100B and neuron specific enolase in identifying neurologic impairment before diagnosis of preeclampsia. Methods A nested case-control study within a longitudinal study cohort was performed. 469 healthy pregnant women were enrolled between 2004-2007 and plasma samples were collected at gestational weeks 10, 25, 28, 33 and 37. Plasma concentrations of tau and neurofilament light chain were analyzed in 16 women who eventually developed preeclampsia and 36 controls throughout pregnancy with single molecule array (Simoa) method and compared within and between groups. S100B and NSE had been analyzed previously in the same study population. A statistical model with receiving characteristic operation curve was constructed with the four biomarkers combined. Results Plasma concentrations of neurofilament light chain were significantly increased in women who developed preeclampsia in gestational week 33 (11.85 ng/L, IQR 7.48-39.93 vs 6.80 ng/L, IQR 5.65-11.40) and 37 (22.15 ng/L, IQR 10.93-35.30 vs 8.40 ng/L, IQR 6.40-14.30) and for tau in gestational week 37 (4.33 ng/L, IQR 3.97-12.83 vs 3.77 ng/L, IQR 1.91-5.25) in contrast to healthy controls. A combined model for preeclampsia with tau, neurofilament light chain, S100B and neuron specific enolase in gestational week 25 displayed an area under the curve of 0.77, in week 28 it was 0.75, in week 33 it was 0.89 and in week 37 it was 0.83. Median week for diagnosis of preeclampsia was at 38 weeks of gestation. Conclusion Concentrations of both tau and neurofilament light chain are increased in the end of pregnancy in women developing preeclampsia in contrast to healthy pregnancies. Cerebral biomarkers might reflect cerebral involvement before onset of disease

    The effect of antenatal depression and selective serotonin reuptake inhibitor treatment on nerve growth factor signaling in human placenta

    Get PDF
    Depressive symptoms during pregnancy are common and may have impact on the developing child. Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressant treatment, but unfortunately, these treatments can also negatively affect the behavioral development and health of a child during pregnancy. In addition, serotonin (5-HT) exerts neurotrophic actions with thus far not fully known effects in the offspring. The neurotrophic growth factor (NGF) is involved in neuronal cell survival and differentiation, and altered placenta levels have been found to increase the risk for pregnancy complications, similar to those found in women treated with SSRIs. We therefore investigated whether the NGF signaling pathway was altered in the placenta from women treated with SSRIs (n = 12) and compared them with placenta from depressed (n = 12) and healthy mothers (n = 12). Results from immunohistochemical stainings revealed that placental NGF protein levels of SSRI-treated women were increased in both trophoblasts and endothelial cells compared with depressed and control women. In addition, downstream of the NGF receptor TrkA, increased levels of the signaling proteins ROCK2 and phosphorylated Raf-1 were found in stromal cells and a tendency towards increased levels of ROCK2 in trophoblasts and endothelial cells in SSRI-treated women when compared to healthy controls. SSRI-treated women also displayed increased levels of phosphorylated ROCK2 in all placental cell types studied in comparison with depressed and control women. Interestingly, in placental endothelial cells from depressed women, NGF levels were significantly lower compared to control women, but ROCK2 levels were increased compared with control and SSRI-treated women. Taken together, these results show that the NGF signaling and downstream pathways in the placenta are affected by SSRI treatment and/or antenatal depression. This might lead to an altered placental function, although the clinical relevance of our findings still needs to be investigated

    Placental protein levels detected by Western blot.

    No full text
    <p>Data are presented as median (minimum–maximum). No significant differences were found between groups, Mann-Whitney <i>U</i> test.</p><p>Placental protein levels detected by Western blot.</p

    Clonality, host species and dilutions of antibodies used in Western blot analysis and immunohistochemistry.

    No full text
    <p>WB = Western blot, IHC = Immunohistochemistry</p><p>Clonality, host species and dilutions of antibodies used in Western blot analysis and immunohistochemistry.</p

    Protein levels in different cell types of placenta detected by immunohistochemistry.

    No full text
    <p>Placental sections stained for NGF, phosphorylated Raf-1 (pRaf-1) and ROCK2 in A) Trophoblasts, B) Endothelial cells and C) Stromal cells. </p
    corecore