6 research outputs found

    Inhibition of Intestinal Bile Acid Transporter Slc10a2 Improves Triglyceride Metabolism and Normalizes Elevated Plasma Glucose Levels in Mice

    Get PDF
    Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2) and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c). Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF) 15 mRNA and normalized bile acid synthesis in Slc10a2−/− mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2 - Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes

    Unexpected Diversity of Cellular Immune Responses against Nef and Vif in HIV-1-Infected Patients Who Spontaneously Control Viral Replication

    Get PDF
    Background: HIV-1-infected individuals who spontaneously control viral replication represent an example of successful containment of the AIDS virus. Understanding the anti-viral immune responses in these individuals may help in vaccine design. However, immune responses against HIV-1 are normally analyzed using HIV-1 consensus B 15-mers that overlap by 11 amino acids. Unfortunately, this method may underestimate the real breadth of the cellular immune responses against the autologous sequence of the infecting virus. Methodology and Principal Findings: Here we compared cellular immune responses against nef and vif-encoded consensus B 15-mer peptides to responses against HLA class I-predicted minimal optimal epitopes from consensus B and autologous sequences in six patients who have controlled HIV-1 replication. Interestingly, our analysis revealed that three of our patients had broader cellular immune responses against HLA class I-predicted minimal optimal epitopes from either autologous viruses or from the HIV-1 consensus B sequence, when compared to responses against the 15-mer HIV-1 type B consensus peptides. Conclusion and Significance: This suggests that the cellular immune responses against HIV-1 in controller patients may be broader than we had previously anticipated.National Institutes of Health (NIH)[R24 RR015371]Ministry of Health[914/BRA/3014-UNESCO]Sao Paulo City Health Department[2004-0.168.922-7]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[04/15856-9]Coordenacao de Aperfeicoamento de Pessoal de Ni-vel Superior (CAPES), Brazilian Ministry of Educatio

    Stereotactic body radiotherapy

    No full text
    Stereotactic body radiation therapy (SBRT) consists of the delivery of precise, conformal, hypofractionated, and ablative therapy in a single or a small number of fractions to extracranial regions. Over the last decade, it is rapidly being integrated into mainstream radiation oncology practices. The indications for SBRT continue to grow, as does the technology associated with its delivery. This chapter presents a detailed overview of clinically relevant topics including patient selection and outcomes, and the technological aspects of planning and delivery of SBRT. The tumor streams covered in this chapter are lung, liver, spine, pancreas, renal cell carcinoma, adrenal, prostate, and head and neck. The chapter concludes by highlighting two novel areas, cardiac arrhythmias and pediatric oncology, in which the use of SBRT is emerging
    corecore