14 research outputs found

    Sensing context: Inhibitory receptors on non-hematopoietic cells

    Get PDF
    Similar to immune cells, non-hematopoietic cells recognize microbial and endogenous threats. Their response to these stimuli is dependent on the environmental context. For example, intact intestinal epithelium expresses pattern recognition receptors (PRRs) but should tolerate commensal bacteria, while damaged epithelium should respond promptly to initiate an immune response. This indicates that non-hematopoietic cells possess mechanisms to sense environmental context and regulate their responses. Inhibitory receptors provide context sensing to immune cells. For instance, they raise the threshold for activation to prevent overzealous immune activation to harmless stimuli. Inhibitory receptors are typically studied on hematopoietic cells, but several of these receptors are expressed on non-hematopoietic cells. Here, we review evidence for the regulation of non-hematopoietic cells by inhibitory receptors, focusing on epithelial and endothelial cells. We explain that inhibitory receptors on these cells can sense a wide range of signals, including cell-cell adhesion, cell-matrix adhesion, and apoptotic cells. More importantly, they regulate various functions on these cells, including immune activation, proliferation, and migration. In conclusion, we propose that inhibitory receptors provide context to non-hematopoietic cells by fine tuning their response to endogenous or microbial stimuli. These findings prompt to investigate the functions of inhibitory receptors on non-hematopoietic cells more systematically

    Inhibitory pattern recognition receptors

    Get PDF
    Pathogen- and damage-associated molecular patterns are sensed by the immune system's pattern recognition receptors (PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps balance responses to danger signals

    VSTM1-v2 does not drive human Th17 cell differentiation: A replication study

    Get PDF
    Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human myeloid cells. We previously showed that dendritic cell (DC)-driven Th17 cell differentiation of human naive CD4+ T cells requires presence of neutrophils, which is inhibited by SIRL-1 ligation. VSTM1-v2 is a soluble isoform of SIRL-1, which was previously proposed to function as a Th17 polarizing cytokine. Here, we investigated the effect of VSTM1-v2 on DC-driven Th17 cell development. Neutrophils induced DC-driven Th17 cell differentiation, which was not enhanced by VSTM1-v2. Similarly, we found no effect of VSTM1-v2 on cytokine-driven Th17 cell development. Thus, our results do not support a role for VSTM1-v2 in Th17 cell differentiation

    Recognition of S100 proteins by Signal Inhibitory Receptor on Leukocytes-1 negatively regulates human neutrophils

    Get PDF
    Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an inhibitory receptor with a hitherto unknown ligand, and is expressed on human monocytes and neutrophils. SIRL-1 inhibits myeloid effector functions such as reactive oxygen species (ROS) production. In this study, we identify S100 proteins as SIRL-1 ligands. S100 proteins are composed of two calcium-binding domains. Various S100 proteins are damage-associated molecular patterns (DAMPs) released from damaged cells, after which they initiate inflammation by ligating activating receptors on immune cells. We now show that the inhibitory SIRL-1 recognizes individual calcium-binding domains of all tested S100 proteins. Blocking SIRL-1 on human neutrophils enhanced S100 protein S100A6-induced ROS production, showing that S100A6 suppresses neutrophil ROS production via SIRL-1. Taken together, SIRL-1 is an inhibitory receptor recognizing the S100 protein family of DAMPs. This may help limit tissue damage induced by activated neutrophils

    On the origin of rheumatoid factors: Insights from analyses of variable region sequences

    No full text
    Objectives: Rheumatoid factors (RFs) are thought to play an important role in rheumatoid arthritis (RA), but are also found in healthy donors (HDs). Previous studies examined variable region sequences of these autoantibodies at a time when knowledge of the human germline repertoire was incomplete. Here we collected and analyzed RF sequence data from the literature to elucidate how RFs develop and whether their characteristics differ between RA patients and HDs. Methods: A database was built containing nucleotide sequences of RF heavy and light chain variable domains and characteristics including affinity, isotype and specificity, all collected from published papers. Gene usage and mutation frequencies were analyzed using IMGT/HiV-QUEST. Selection strength was assessed with the BASELINe tool. Results: Sequences were retrieved for 183 RF clones (87 RA; 67 HDs; 29 other). No biased gene usage was observed for RA and HDs. However, there does appear to be skewed gene usage in RFs from patients with mixed cryoglobulinemia. Mutation frequency varies considerably between RFs, and isotype-switched clones have significantly more mutations. Monospecific RFs carry more mutations than polyspecific RFs; no difference was found for RA- versus HD-derived RFs. Overall, reported affinity is low (median 1 µM), with a non-significant trend toward higher affinity of RA-derived RFs. Mutation frequency and affinity did not appear to be correlated. BASELINe analysis suggests an overall lack of positive selection and less negative selection strength in RA-derived RFs. Conclusions: RFs derived from RA patients have similar properties as those derived from HDs. The RF response can be characterized as a moderately matured autoantibody response, with variable levels of somatic hypermutation, but low affinity

    VSTM1-v2 does not drive human Th17 cell differentiation: A replication study

    No full text
    Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human myeloid cells. We previously showed that dendritic cell (DC)-driven Th17 cell differentiation of human naive CD4+ T cells requires presence of neutrophils, which is inhibited by SIRL-1 ligation. VSTM1-v2 is a soluble isoform of SIRL-1, which was previously proposed to function as a Th17 polarizing cytokine. Here, we investigated the effect of VSTM1-v2 on DC-driven Th17 cell development. Neutrophils induced DC-driven Th17 cell differentiation, which was not enhanced by VSTM1-v2. Similarly, we found no effect of VSTM1-v2 on cytokine-driven Th17 cell development. Thus, our results do not support a role for VSTM1-v2 in Th17 cell differentiation

    VSTM1-v2 does not bind to leukocytes.

    No full text
    Erythrocyte-lysed whole blood was incubated with His-tagged VSTM1-v2 or sLAIR-1ecto (10–50 μg/mL), followed by detection with anti-His-AF647. (A) Lymphocytes (lower population), monocytes (middle population) and granulocytes (upper population) were gated based on forward scatter (FSC) and sideward scatter (SSC), followed by gating on single cells and AF-647+ cells. (B) Shown are representative dot plots of lymphocytes stained with 50 μg/mL VSTM1-v2 and/or anti-His-AF647. (C-E) The graphs show the quantification of the percentage of AF647+ cells of lymphocytes (C), monocytes (D), or granulocytes (E). Data are shown as mean ± SD of two donors. (TIF)</p

    VSTM1-v2 does not enhance Th17 cell differentiation and activation.

    No full text
    CD4+ T cells were stimulated by C. albicans-activated moDCs, with or without autologous neutrophils (A-C), or with antibodies and a polarizing cytokine mix (D), with or without addition of 10 or 100 ng/mL VSTM1-v2. Intracellular IL-17 expression was determined by flow cytometry. (A) Schematic representation of the co-culture system of moDC-driven Th17 cell differentiation and activation. (B) Representative dot plots of the percentage of IL-17+ cells after co-culture of naive CD4+ T cells. The y-axis indicates the fluorescence intensity of the IL-17A staining, while the x-axis indicates the forward scatter (FSC). (C) The percentage of IL-17+ cells after co-culture of naive CD4+ T cells (n = 10), each donor represented by a different color, or memory CD4+ T cells (n = 3; mean ± SD). (D) The percentage of IL-17+ cells after stimulation of total CD4+ T cells with anti-CD3, anti-CD28, and a Th17 polarizing mix, mean ± SD, n = 3. Statistical significance was determined using a Friedman test with Dunn’s correction (C, D). ** p biorender.com.</p

    Clinically relevant discrepancies between different rheumatoid factor assays

    Get PDF
    Accurate measurements of rheumatoid factors (RFs), autoantibodies binding IgG, are important for diagnosing rheumatoid arthritis (RA) and for predicting disease course. Worldwide, various RF assays are being used that differ in technique and target antigens. We studied whether assay choice leads to clinically important discrepancies in RF status and level. RF measurements using four commercial RF assays were compared in 32 RF+ samples. Using enzyme-linked immunosorbent assays (ELISAs), the influence of the target antigen source - human IgG (hIgG) versus rabbit IgG (rIgG) - on measured RF levels was investigated in arthralgia patients and RA patients. Substantial discrepancies were found between RF levels measured in the four commercial assays. Six samples (19%) with RF levels below or slightly above the cutoff in the rIgG-based Phadia assay were RF+ in three assays using hIgG as the target antigen, some with very high levels. Direct ELISA comparisons of RF reactivity against hIgG and rIgG estimated that among 173 ACPA+ arthralgia patients, originally RF negative in rIgG-based assays, up to 10% were single positive against hIgG. Monoclonal RFs binding to hIgG and rIgG or hIgG only supported these findings. In a cohort of 69 early RA patients, virtually all RF responses reacted with both targets, although levels were still variable. The use of RF assays that differ in technique and target antigen, together with the different specificities of RF responses, leads to discrepancies in RF status and levels. This has important consequences for patient care if RA diagnosis and disease progression assessments are based on RF test result

    Soluble Signal Inhibitory Receptor on Leukocytes-1 Is Released from Activated Neutrophils by Proteinase 3 Cleavage

    No full text
    Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human granulocytes and monocytes that dampens antimicrobial functions. We previously showed that sputum neutrophils from infants with severe respiratory syncytial virus (RSV) bronchiolitis have decreased SIRL-1 surface expression compared with blood neutrophils and that SIRL-1 surface expression is rapidly lost from in vitro activated neutrophils. This led us to hypothesize that activated neutrophils lose SIRL-1 by ectodomain shedding. Here, we developed an ELISA and measured the concentration of soluble SIRL-1 (sSIRL-1) in patients with RSV bronchiolitis and hospitalized patients with COVID-19, which are both characterized by neutrophilic inflammation. In line with our hypothesis, sSIRL-1 concentration was increased in sputum compared with plasma of patients with RSV bronchiolitis and in serum of hospitalized patients with COVID-19 compared with control serum. In addition, we show that in vitro activated neutrophils release sSIRL-1 by proteolytic cleavage and that this diminishes the ability to inhibit neutrophilic reactive oxygen species production via SIRL-1. Finally, we found that SIRL-1 shedding is prevented by proteinase 3 inhibition and by extracellular adherence protein from Staphylococcus aureus. Notably, we recently showed that SIRL-1 is activated by PSMα3 from S. aureus, suggesting that S. aureus may counteract SIRL-1 shedding to benefit from preserved inhibitory function of SIRL-1. In conclusion, we report that SIRL-1 is released from activated neutrophils by proteinase 3 cleavage and that endogenous sSIRL-1 protein is present in vivo
    corecore