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Inhibitory pattern recognition receptors
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Pathogen- and damage-associated molecular patterns are sensed by the immune system’s pattern recognition receptors
(PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological
cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context
dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as
potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition
receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We
propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps
balance responses to danger signals.

Pattern recognition receptors (PRRs) recognize
molecular patterns
The immune system needs to recognize and correct deviations
from normal physiology, such as harmful contact with a mi-
crobe, disruption and damage of healthy tissue, and malignant
transformation of cells. To sense the presence of microbes, the
immune system employs a set of PRRs (Janeway, 1989). At
present, five classes of PRRs have been defined: the TLRs and the
C-type lectin receptors, which are both localized to cell or en-
dosomal membranes; the cytoplasmic NOD-like receptors and
RIG-I–like receptors; and additional cytoplasmic DNA sensors,
such as cyclic GMP-AMP synthase (Gong et al., 2020; Takeuchi
and Akira, 2010). PRRs recognize highly conserved components
of microbes, termed pathogen-associated molecular patterns
(PAMPs; Akira et al., 2006; Medzhitov and Janeway, 2002).
In addition, PRRs sense endogenous molecules associated with
damaged and dying cells termed danger- or damage-associated
molecular patterns (DAMPs). Many factors are currently con-
sidered DAMPs, among which are S100 proteins, heat shock
proteins (Hsps), highmobility group box 1 protein (HMGB1), and
different glycans such as heparan sulfate (Chen and Nuñez,
2010; Matzinger, 1994; Matzinger, 2002).

The self–nonself model of microbe recognition, first intro-
duced by Frank Macfarlane Burnet and later refined by Charles
Janeway, explains how the innate immune system recognizes
pathogens through molecular patterns (Burnet, 1959; Janeway,
1989). Because pathogens constantly evolve, they cannot be
recognized individually, as this would require an infinite

number of receptors. To circumvent this problem, the immune
system recognizes components of microbial cells that are highly
conserved (but not identical) among microbes and cannot be
subject to quick change or removal by the microbe because they
are essential for its survival (Bianchi and Manfredi, 2009).
These groups of structurally similar molecules are called PAMPs.
One of the first PAMPs to be discovered was LPS of Gram-
negative bacteria, which is detected by TLR4, providing acti-
vating signals that drive adaptive immunity (Medzhitov et al.,
1997; Poltorak et al., 1998). Soon after, many additional PAMPs
were discovered, such as the lipoteichoic acid (LTA) of Gram-
positive bacteria (Schwandner et al., 1999). Later, Polly
Matzinger extended the family of “molecular patterns” by pre-
senting the danger theory of immunity, introducing DAMPs.
The term DAMP has since been used in the literature to denote
both damage- and danger-associated molecular patterns. Unlike
PAMPs, DAMPs are not defined structurally, and there is (fol-
lowing Janeway’s argument) little need for that: there are only a
finite number of host molecules. Instead, DAMPs are defined
contextually: they signal danger, and what is dangerous in one
place is not necessarily dangerous in another. Such a model is
not easily addressed experimentally because of this elusive
definition of danger (Pradeu and Cooper, 2012). As highlighted
by Pradeu and Cooper (2012), Matzinger later clarified that
while the model is theoretical, the idea behind it is that the
immune system responds to damage (Matzinger, 2002), and
damage signals are much easier to define than danger signals.
Since then, many more groups of molecular patterns have been
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put forward, among which are resolution-, metabolism-, com-
mensal-, and homeostasis-associated molecular patterns (HAMPs;
Cario et al., 2002; Greslehner, 2020; Li et al., 2019; Shields et al.,
2011; Wang et al., 2020). Under the term molecular pattern, we
now classify groups of molecules that signal the occurrence of a
particular event, that elicit similar effects, and that may share
common structural features.

Immune responses are context dependent
The same molecular pattern does not always evoke the same
response. Different microbes inevitably colonize barrier tissues
such as the skin and gastrointestinal tract, and most of them are
not harmful or even provide benefit to the host, yet still express
PAMPs. Similarly, while tissue damage and cell death can be
pathologic, cell death can also be part of normal physiology
and tissue renewal. To distinguish harmless from potentially
harmful circumstances, the immune system must correctly in-
terpret the activating signals molecular patterns are delivering,
and therefore the threshold for immune system activation needs
to vary by context. Tissues that are highly exposed to microbes,
such as the gut and skin, require a high activation threshold to
tolerate most microbes, whereas in the circulation, a low acti-
vation threshold is required to respond to all microbes (Fig. 1).
Furthermore, not all tissues can tolerate tissue damage to the
same extent. In situations where inflammatory responses result
in more damage to the organism than the disturbance itself, not
responding to disturbances is the best strategy (Medzhitov et al.,
2012). Following this argument, the threshold for immune

activation needs to be higher in organs with low regenerative
capacity, such as the heart or brain, where an inflammatory
response can lead to detrimental consequences, versus organs
with a high regenerative capacity, such as the liver (Fig. 1).
Hence, the immune response needs to be context dependent,
and it is not clear how context for molecular pattern recogni-
tion is provided.

Immune inhibitory receptors dampen immune
system activation
Immune inhibitory receptors are germline-encoded innate re-
ceptors relaying inhibitory signals to immune cells. Much about
their functioning has been learned by studying programmed
cell death protein 1 (PD-1), cytotoxic T-lymphocyte protein 4
(CTLA-4), and killer cell Ig-like inhibitory receptors on NK cells
(Long, 2008; Ravetch and Lanier, 2000; Rowshanravan et al.,
2018). Inhibitory receptors attenuate activating signals coming
from activating receptors and fine-tune the level of activation of
an immune cell. Most of them relay the inhibitory signals via
one or more immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) present in their cytoplasmic tails. ITIMs have the con-
sensus sequence V/L/I/SxYxxV/L/I (Vivier and Daëron, 1997).
When immune inhibitory receptors are activated by their li-
gands, the ITIMs recruit tyrosine phosphatases, which dephos-
phorylate the cytoplasmic tails of activating receptors or key
molecules in their signaling pathways (Coxon et al., 2017;
Gergely et al., 1999). The ligands for many inhibitory receptors
are still unknown, while some single-molecule ligands have

Figure 1. The optimal threshold for activation is context dependent. The required threshold for activation of immune cells differs per location and
depends on (1) the tolerance of the organ for immune pathology and (2) the tolerance to microbial exposure. Organs with a high regenerative capacity, such as
the liver, are more able to deal with immunopathology than organs with low regenerative capacity, such as the heart or the brain. The gut and skin are
constantly exposed tomicrobes, most of which are harmless or beneficial and should be tolerated. The eye can tolerate a certain amount of microbial exposure,
and the cost of responding to a microbial stimulus will be high, so a high threshold will ensure the response occurs only when needed. In different organs, either
tolerance for microbes or tolerance for immunopathology may be more important in determining the optimal threshold for activation.
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been identified for others. We previously argued that immune
inhibitory receptors regulate immune responses in different
ways. They may set a threshold for immune cell activation by
preventing activating receptor signaling in certain contexts or
dampen activating receptor signaling after it has already hap-
pened. The mode of action of any inhibitory receptor depends
on the expression pattern of the receptor and the availability of
its ligand (Rumpret et al., 2020). By providing an inhibitory
signal, inhibitory receptors give additional information on the
context in which an activating signal is sensed, thereby ad-
justing the immune response to the specific situation.

Some activating PRRs, under specific circumstances, can also
demonstrate inhibitory functions. For example, TLR4 signaling
from the cell membrane typically evokes proinflammatory re-
sponses, while TLR4 signaling from the endosome also triggers
antiinflammatory responses (Kagan, 2012; Siegemund and
Sauer, 2012). Here, we discuss the concept of inhibitory
pattern recognition receptors (iPRRs). We specifically focus

on canonical inhibitory receptors that use ITIM-dependent
inhibitory signaling pathways to relay their signals, resulting
in inhibitory functions. We define a group of immune inhibi-
tory receptors that recognize DAMPs, HAMPs, and PAMPs and
classify these inhibitory receptors as iPRRs. We propose that,
just like most activating PRRs (Gong et al., 2020), most iPRRs
recognize both microbial and endogenous patterns (Fig. 2). We
propose that iPRRs constitute the inhibitory counterparts of
activating PRRs and provide context to the activating signals
coming from activating PRRs.

iPRRs recognize DAMPs
Upon the occurrence of damaged or dying cells, different DAMPs
can arise and promote inflammation, leading to tissue repair but
also immunopathology (Gong et al., 2020). Multiple inhibitory
receptors could potentially tune DAMP-induced inflammatory
responses (Fig. 2; Arnold et al., 2013; Brewer et al., 2019; Carlin
et al., 2007; Chang et al., 2014; Chen et al., 2009; Choi et al., 2011;

Figure 2. iPRRs and their endogenous and microbial ligands. The currently known group of iPRRs consist of CD300a/f, Siglecs 2, 3, and 5–11, CEACAM1,
LILRB1 and LILRB3, TIGIT, poliovirus receptor (PVR), LAIR-1, and SIRL-1. The upper part of the figure displays endogenous ligands, and the bottom part displays
the microbial ligands for iPRRs. For most receptors, both endogenous and exogenous ligands have been identified. Protein ligands are depicted as rectangles,
lipids as circles, and carbohydrates as hexagons. All inhibitory receptors depicted are composed of Ig domains, and the number of Ig domains is schematically
depicted for each receptor. In humans, most of these receptors are located in the chromosomal region 19q13, except CD300a/f (17q25) and TIGIT (3q13). *, LTA
is a ligand for the mouse orthologue of the human LILRB3. PSM, phenol-soluble modulin; S100s, S100 proteins; SIA, sialic acid.
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Conners et al., 2008; Fong et al., 2015; Gur et al., 2015; Gur et al.,
2019; Jones et al., 2016; Klaile et al., 2017; Königer et al., 2016;
Korotkova et al., 2008; Kumawat et al., 2019; Lebbink et al.,
2009; Macauley et al., 2014; Nakayama et al., 2012; Rumpret
et al., 2021a; Rumpret et al., 2021b; Simhadri et al., 2012; van
Sorge et al., 2021; Virji et al., 1996; Yu et al., 2009). The sialic
acid–binding Ig-like lectin (Siglec)-10–CD24 complex recognizes
HMGB1, Hsp70, and Hsp90 and limits the immune response to
damaged cells (Chen et al., 2009). It thereby limits harmful in-
flammatory responses in conditions such as sepsis (Chen et al.,
2011), infection (Chen et al., 2013), and liver damage. Indeed,
CD24−/− mice die of sublethal doses of acetaminophen-induced
liver injury (Chen et al., 2009). Siglec-5 recognizes Hsp70 and
delivers antiinflammatory signals to monocytes, which results
in decreased production of TNFα and IL-8 in cells stimulated
with LPS (Fong et al., 2015). Similarly, CD85j (leukocyte Ig-like
receptor subfamily Bmember 1 [LILRB1]; Arnold et al., 2013) and
signal inhibitory receptor on leukocytes 1 (SIRL-1; Rumpret
et al., 2021a) recognize S100 proteins, another group of proto-
typical DAMPs. Blocking SIRL-1 enhances S100-induced release
of reactive oxygen species in human neutrophils (Rumpret et al.,
2021a). SIRL-1 additionally recognizes another DAMP, the anti-
microbial peptide LL-37 (Rumpret et al., 2021b). LILRB3 recog-
nizes a cytokeratin-associated protein, a cytoskeleton protein
that is exposed in the extracellular environment after necrotic
cell death and is recognized by the activating receptor LILRA6
(Jones et al., 2016). Thus, several iPRRs recognize DAMPs.

Die. Where? How?
Cells can die in either an immunologically silent manner
(apoptosis) or an immunogenic and proinflammatory manner;
the latter can be a controlled process (such as necroptosis and
pyroptosis) or an uncontrolled process (necrosis). Apoptotic
cells are recognized, engulfed by phagocytes, and degraded in-
tracellularly. In contrast, membranes of cells that die via im-
munogenic cell death (ICD) are ruptured, and intracellular
components are released into the local microenvironment, many
of which are regarded as DAMPs by neighboring cells (Bedoui
et al., 2020). Interestingly, the type of ICDmay determine which
type of DAMP is released. This is illustrated by the finding that
HMGB1 release can occur after both necroptosis and pyroptosis,
while release of S100, Hsp70, and Hsp90 only occurs upon ne-
crosis and/or necroptosis, but not in the context of pyroptosis
(Frank and Vince, 2019). Thus, ICD results in the release of
DAMPs and sets off a chain reaction, since DAMPs themselves
induce ICD in cells that recognize them. This inflammatory
chain reaction can be unwanted and highly dangerous, partic-
ularly in locations with low regenerative capacity (Fig. 1). Me-
chanical stress, such as brain trauma, can induce both apoptosis
and ICD via necrosis (Vourc’h et al., 2018). The balance between
these two types of cell death in cases of mechanical stress varies
between tissues and seems to shift more toward necrosis upon
increased levels of stress and duration of stress (Takao et al.,
2019; Valon and Levayer, 2019; Vourc’h et al., 2018). A recent
review posits that a certain level of plasticity exists between
apoptosis and ICD: inflammasomes, multiprotein oligomers that
form intracellularly upon recognition of PAMPs or DAMPs and

usually activate ICD, can drive apoptosis when specific mole-
cules (caspase 1 or gasdermin D) are inhibited (Bedoui et al.,
2020). iPRR could provide this inhibitory signal upon recogni-
tion of DAMPs, resulting in the immediate dampening of an
inflammatory chain reaction by steering the response away
from ICD and toward apoptosis. Consequently, one can imagine
that if inhibitory signaling occurs swiftly in sterile stress con-
ditions, such as ischemia–reperfusion injury or trauma, in-
flammatory responses can be avoided. Importantly, sterile stress
conditions do not always result in measurable inflammatory
responses, and it is conceivable that cells in specific essential
tissues do not respond to the initial release of DAMPs alto-
gether. Since dependence on a rapid switch from ICD toward
apoptosis is a risky bet for essential tissues, a more rapid al-
ternative would be if DAMPs that bind iPRRs directly rendered
the cells unresponsive.

iPRRs recognize molecules associated with homeostasis
As opposed to DAMPs, which typically are associated with
danger and damage, HAMPs have previously been proposed to
inhibit immune activation (Li et al., 2019; Sun et al., 2018; Wang
et al., 2016). HAMPs have various properties and mechanisms of
action; for example, lysophospholipids bind G protein–coupled
receptors (Wang et al., 2016), and IL-35 binds cytokine receptors
(Li et al., 2019). Already before the introduction of the concept of
HAMPs, the guard theory of immunity was established in plants.
The guard theory proposes that rather than sensing insults such
as pathogens directly, the immune system recognizes the con-
sequences of these insults for the organism. This is reflected by
changes in the levels of the guard proteins, triggering immune
responses (Dangl and Jones, 2001). Multiple lines of evidence
suggest that the foundations of the guard theory also apply to the
animal immune system (Medzhitov, 2009). Thus, HAMPs in
animals and humans may be seen as a parallel to the preceding
guard theory. Here, we discuss HAMPs that ligate immune in-
hibitory receptors.

When cells undergo apoptosis, lipids such as phosphatidyl-
serine (PS) and phosphatidylethanolamine (PE) are exposed on
the cell surface and signal tissue-resident immune cells to find
and dispose of the dying cells without triggering inflammation
(Arandjelovic and Ravichandran, 2015; Gordon and Plüddemann,
2018; Segawa and Nagata, 2015). PS and PE are sensed by inhib-
itory members of the CD300 family of immune receptors, CD300a
and CD300f (Choi et al., 2011; Simhadri et al., 2012). These in-
teractions primarily result in dampening of mast cell activation by
apoptotic cells, preventing inflammatory responses (Nakahashi-
Oda et al., 2012). In line with this, CD300a−/− mice develop ex-
acerbated joint inflammation in an antigen-induced arthritis
model (Valiate et al., 2019). In addition to apoptotic cells, viable
cells can also transiently expose PS and PE, which may occur
under inflammatory conditions (Arandjelovic and Ravichandran,
2015; Gong et al., 2020; Ravichandran, 2010), suggesting that ad-
ditional layers of regulation may be needed to prevent phagocy-
tosis of nonapoptotic cells. Indeed, it has been shown that
CD300a/f ligation by PS and PE also negatively regulates phago-
cytosis of apoptotic cells (Ju et al., 2008; Simhadri et al., 2012). It is
possible that a similar regulatory circuit is in place to prevent
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phagocytosis of PS- or PE-bearing nonapoptotic cells. Further-
more, all host cells express diverse sialylated glycan structures,
and these sialic acids are effectively a molecular pattern associated
with self and homeostasis. Sialylated glycans are sensed by im-
mune receptors of the Siglec family (reviewed in Macauley et al.,
2014). Most Siglecs (human Siglec 2, 3, and 5–11) harbor an ITIM
motif and are inhibitory receptors. Each Siglec exhibits prefer-
ential recognition of a different sialylated glycan. Siglecs partici-
pate in immune surveillance and provide the immune systemwith
inhibitory signals to prevent reactivity against self. It has recently
been shown that, in addition to cell surface proteins and lipids,
small RNAs can be modified with glycans and tethered to the cell
membrane of diverse cells under homeostatic conditions, em-
phasizing the role glycans play in the maintenance of homeostasis
(Flynn et al., 2021). In line with this, the lack of Siglec signaling is
associated with autoimmune disease. Mice double-deficient for
Siglec-G and Siglec-2 spontaneously develop systemic lupus
erythematosus–like systemic autoimmune disease upon aging
(Jellusova et al., 2010). Other mechanisms of the host’s own
molecules preventing activation of the immune system have re-
cently been demonstrated: for example, the inhibitory properties
of select endogenous lipids on interactions between CD1a and TCR,
effectively preventing T cell responses (Cotton et al., 2021). It re-
mains to be determined whether similar molecules can also de-
liver inhibitory signals to immune cells via inhibitory receptors.

Some molecular patterns elicit activating and
inhibitory signals
Several molecular patterns can be recognized by both inhibitory
and activating receptors. The inhibitory receptor leukocyte-
associated Ig-like receptor 1 (LAIR-1) recognizes a HAMP
present in different transmembrane and extracellular matrix–
associated collagens as well as collectins, leading to negative
regulation of inflammatory responses, such as airway inflam-
mation during viral infection (Kumawat et al., 2019; Lebbink
et al., 2009). Collagens are also recognized by the activating
receptor osteoclast-associated Ig-like receptor (OSCAR), through
which they can promote inflammation (Barrow et al., 2011;
Schultz et al., 2016). Further, a few Siglec receptors are acti-
vating (Macauley et al., 2014), indicating there may be instances
where sialylated glycans instigate immune activation. The rel-
ative expression of activating and inhibitory receptors on im-
mune cells in a given situation, together with other potential
environmental cues, will thus determine to what extent a cell
becomes activated by these molecular patterns.

iPRRs can deliver potent inhibitory signals to immune cells
and attenuate or halt immune system activation. Therefore, they
are often exploited by tumors to evade the immune system.
For instance, many tumors highly express diverse collagens,
dampening antitumor immune responses through LAIR-1 acti-
vation on immune cells (Peng et al., 2020; Rygiel et al., 2011).
Similarly, various tumor types up-regulate sialylated ligands
for inhibitory Siglec receptors, resulting in a dampened anti-
tumor immune response (Fraschilla and Pillai, 2017; Jandus
et al., 2014; van de Wall et al., 2020). CD155, the ligand for
inhibitory receptor T cell immunoreceptor with Ig and ITIM
domains (TIGIT), is also up-regulated on tumor cells and

inhibits T cell antitumor immune responses (Braun et al.,
2020; Dougall et al., 2017). Up-regulation of inhibitory re-
ceptor ligands in tumor tissues thus appears to be a strategy
of immune evasion in cancer.

iPRRs recognize microbial molecular patterns
Similar to how the occurrence of DAMPs does not always result
in inflammation, microbial PAMPs do not always relay
inflammation-promoting signals. Most microbes do not behave
as either strictly pathogens or strictly commensals. Microbes
with high pathogenic potential can also exist as harmless col-
onizers of the host, and commensal microbes can cause disease
when they behave in an atypical way. Activating PRRs alone
cannot differentiate between these situations, and it has thus
been suggested that the immune system makes distinctions
between pathogenic and nonpathogenic microbes through an
integrated system of signals rather than one particular signal
(Greslehner, 2020; Swiatczak et al., 2011). We argue that iPRRs
may provide these additional signals.

Immune inhibitory receptors have been shown to interact
with microbes, but since these interactions have been predom-
inantly studied in experimental models of infection, it is com-
monly thought that iPRR–microbe interactions mediate immune
evasion by the microbe (Van Avondt et al., 2015). Since most
microbes are not strictly pathogens, it is reasonable to think that
the interaction of microbial ligands with inhibitory receptors
could contribute to symbiosis. Multiple iPRRs recognize micro-
bial ligands (Fig. 2). Staphylococcus aureus, a bacterium that
commonly colonizes the human skin and nasal mucosa, interacts
with the mouse paired Ig-like receptor B (PIR-B, orthologue of
human LILRB3) through LTA, thereby limiting proinflammatory
cytokine production. Indeed, PIR-B−/− mice infected with S.
aureus show decreased survival compared with wild-type mice
(Nakayama et al., 2012). LTA is a PAMP and an essential com-
ponent of the cell wall universally expressed not only by S. au-
reus, but also by other related, less pathogenic species. The
inhibitory receptor PIR-B/LILRB3 could thus regulate the host
interaction with S. aureus in a noninflammatory context through
recognition of PAMPs.

As discussed above, endogenous sialic acids are a molecular
pattern associated with self and homeostasis, and they interact
with different inhibitory Siglec receptors. Sialic acids present on
the surface of group B streptococcus (GBS) likewise interact
with inhibitory Siglecs (Carlin et al., 2007; Chang et al., 2014).
The sialic acid is common to all GBSs, which is not a strict
pathogen but rather an opportunist. CD33 Siglecs are expressed
in skin-resident Langerhans cells, which could allow for inter-
action between Langerhans cells and GBS, resulting in an in-
hibitory signal and thus promoting the colonizing lifestyle of
GBS. Other inhibitory receptors interacting with bacteria are
SIRL-1, which recognizes staphylococcal phenol-soluble mod-
ulins (Rumpret et al., 2021b), and TIGIT, which recognizes a
ligand expressed by the oral commensal bacterium Fusobacte-
rium nucleatum (Gur et al., 2015). The functional roles of these
interactions are yet to be fully explored.

A particularly prominent binder of microbial ligands is
the inhibitory receptor carcinoembryonic antigen-related
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cell adhesion molecule 1 (CEACAM1). On immune cells, CEA-
CAM1 is restrictively expressed on activated cells, whereas it is
constitutively expressed by epithelial cells (Gray-Owen and
Blumberg, 2006; Huang et al., 2015). It binds many different
microbial ligands, such as bacterial Dr adhesins of Escherichia
coli (Korotkova et al., 2008), the Opa protein of Neisseria men-
ingitidis, Neisseria gonorrhoeae (Virji et al., 1996) and commensal
Neisseria species (Toleman et al., 2001), adhesin UspA1 of
Moraxella catarrhalis (Conners et al., 2008), the HopQ adhesin
of Helicobacter pylori (Königer et al., 2016), CbpF adhesion of
Fusobacterium sp. (Brewer et al., 2019; Gur et al., 2019), the
streptococcal β protein (van Sorge et al., 2021), and an un-
identified ligand in the fungus Candida sp. (Klaile et al., 2017).
Although most of these microbes can be pathogenic, they do
not always cause disease. Moreover, the absence of CEACAM1
has been shown in mouse models to predispose to colitis (Jin
et al., 2016; Nagaishi et al., 2006). Together, these data indi-
cate that CEACAM1 may have a tolerizing function in host–
microbe interactions rather than serving only as a means for
immune evasion.

Concluding remarks and future perspectives
Here, we define a group of inhibitory receptors that can be
classified as iPRRs. We argue that iPRRs, like their activating
counterparts, recognize molecular patterns (Table 1; Akira et al.,
2006; Alvarez et al., 2008; An and Brodsky, 2016; Angata et al.,
2002; Arakawa et al., 2018; Arnold et al., 2013; Brewer et al., 2019;
Brown and Crocker, 2016; Carlin et al., 2007; Chang et al., 2014;
Chen et al., 2009; Choi et al., 2011; Conners et al., 2008; Dougall
et al., 2017; Fong et al., 2015; Gray-Owen and Blumberg, 2006;
Gur et al., 2015; Gur et al., 2019; Han et al., 2005; Jones et al.,
2016; Klaile et al., 2017; Königer et al., 2016; Korotkova et al., 2008;
Kretschmer et al., 2010; Kumawat et al., 2019; Lebbink et al.,
2009; Lewis Marffy and McCarthy, 2020; Liu et al., 2014; Macauley
et al., 2014; Nakayama et al., 2012; Nakayama et al., 2007; Nuñez et al.,
2018; Pende et al., 2006; Pérez-Oliva et al., 2011; Prantner et al., 2020;
Rumpret et al., 2021a; Rumpret et al., 2021b; Segawa andNagata, 2015;
Simhadri et al., 2012; Sims et al., 2010; Steevels et al., 2013; van Sorge
et al., 2021; Virji et al., 1996; Young et al., 2008; Yu et al., 2009;
Zenarruzabeitia et al., 2015). This recognition provides context- and
location-dependent signals to help shape the immune response. We

Table 1. Overview of different properties of iPRRs

iPRR iPRR expression iPRR
structure

Signaling
pathway

Endogenous
ligand

Endogenous
ligand expression

Microbial ligand Activating
receptor for the
same ligand

CD300a/f Broad on immune cells,
upregulated on activation

Ig-like ITIM PS, PE Exposed in
programmed cell
death

— Tim4

CEACAM‑1 Broad on immune,
epithelial, and endothelial
cells

Ig-like ITIM CEACAM1 and
other CEACAMs

Constitutive Ig fold proteins Other CEACAMs

LAIR-1 Broad on immune cells; on
activation, upregulated on
neutrophils and
downregulated on T cells

Ig-like ITIM Collagen Constitutive — OSCAR

LILRB1
(CD85j)

Neutrophil, monocyte,
dendritic cell, and NK cell,
upregulated on activation

Ig-like ITIM S100 proteins Upon cell damage — TLR4, RAGE

LILRB3
(CD85a)

Neutrophil, monocyte,
dendritic cell

Ig-like ITIM Unknown
cytokeratin-
associated ligand

Upon cell damage Unknown in S. aureus
(LTA shown for mice
ortholog PIR-B)

TLR2/6

PVR Dendritic cell, upregulated
on activation

Ig-like ITIM Nectin-3 Constitutive Poliovirus —

Siglec 2, 3,
5–11

Broad on immune cells,
differs per receptor

Ig-like ITIM Sialic acids Constitutive Sialic acids Siglec 14–16

Siglec 2, 3,
5–11

Broad on immune cells,
differs per receptor

Ig-like ITIM Hsp70 Upon cell damage — TLR4, RAGE

Siglec 10 B cell, eosinophil,
monocyte

Ig-like ITIM HMGB1, Hsp90 Upon cell damage — TLR4, RAGE

SIRL-1 Neutrophil, monocyte,
downregulated on
activation

Ig-like ITIM LL-37, S100
proteins

Upon cell damage
and immune
activation

Phenol-soluble
modulins of
Staphylococcus

TLR4, RAGE, FPR2

TIGIT T cell, NK cell, upregulated
on activation

Ig-like ITIM DNAM-1, TIGIT TIGIT upregulated
on activation

Unknown in
F. nucleatum

DNAM-1

OSCAR, osteoclast-associated Ig-like receptor; PVR, poliovirus receptor; RAGE, receptor for advanced glycation end products.

Rumpret et al. Journal of Experimental Medicine 6 of 10

Inhibitory pattern recognition receptors https://doi.org/10.1084/jem.20211463

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/219/1/e20211463/1426737/jem
_20211463.pdf by U

trecht U
niversiteitsbibliotheek user on 27 M

ay 2022

https://doi.org/10.1084/jem.20211463


indicate that most of the iPRRs discussed here are able to recognize
both endogenous and microbial patterns (Fig. 2). The relative expres-
sion of activating and inhibitory PRRs and the integration of their
signals ultimately determines the strength of an immune response to
microbes or damage. This allows a differential response to tissue
damage in different organs, depending on their susceptibility to im-
munopathology (Fig. 1). For example, in tissues that have low regen-
erative capacity, such as the brain, increased expression of iPRRs could
provide a higher activation threshold and prevent the release of
DAMPs that leads to inflammation and further tissue damage (Ashour
et al., 2021). We also point out that endogenous patterns can signal
“safety” via iPRRs to ensure that commonly occurring events such as
apoptosis do not trigger the immune system. Similarly, there may be
microbial patterns ensuring that harmlessmicrobes colonizing thehost
do not bring about inflammatory responses (Fig. 3). For example, in
the blood, microbial patterns such as LTA are recognized by acti-
vating PRRs. In contrast, in other anatomic locations such as the
skin, iPRRs could also signal in response to these patterns, abro-
gating their potential to trigger inflammatory responses. We argue
that the interactions between iPRRs and theirmicrobial ligandsmay
thus be vital for establishing and maintaining commensal–host
homeostasis and suggest that studies in this direction are needed to
examine this hypothesis. Further exploration of possible additional
iPRRs, their ligands, and their expression patterns will provide
a better understanding of the interactions of the host with its
microbiota and the contextual regulation of septic and sterile
inflammation.

Finally, iPRRs can be exploited to treat or prevent disease.
The increased understanding of the function of inhibitory
receptors has led to significant advances in the treatment of
cancer. PD-1 and CTLA-4 have proven their potential as ther-
apeutic targets on T cells for cancer immunotherapy (Ribas and
Wolchok, 2018). Innate cells such as NK cells, innate lymphoid
cells, and different myeloid cell types are also important in

anticancer immune responses. These cells can directly con-
tribute to tumor removal and additionally modulate antitu-
mor T cell responses by steering T cell activation. Different
iPRRs expressed on these cells, such as TIGIT and CD96, are
already being explored as additional therapeutic targets (Dougall
et al., 2017). With an increased understanding of the properties
of iPRRs and their ligands, we expect that more of these receptors
will be used as targets for immunotherapy.
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