
Eur. J. Immunol. 2023;53:2250306 Helen J. von Richthofen and Linde MeyaardDOI: 10.1002/eji.202250306 1 of 10
B
asic

HIGHLIGHTS

REVIEW

Sensing context: Inhibitory receptors on
non-hematopoietic cells

Helen J. von Richthofen1,2 and Linde Meyaard1,2

1 Center for Translational Immunology, University Medical Center Utrecht, Utrecht University,
Utrecht, The Netherlands

2 Oncode Institute, Utrecht, The Netherlands

Similar to immune cells, non-hematopoietic cells recognize microbial and endogenous
threats. Their response to these stimuli is dependent on the environmental context. For
example, intact intestinal epithelium expresses pattern recognition receptors (PRRs) but
should tolerate commensal bacteria, while damaged epithelium should respond promptly
to initiate an immune response. This indicates that non-hematopoietic cells possess
mechanisms to sense environmental context and regulate their responses. Inhibitory
receptors provide context sensing to immune cells. For instance, they raise the threshold
for activation to prevent overzealous immune activation to harmless stimuli. Inhibitory
receptors are typically studied on hematopoietic cells, but several of these receptors are
expressed on non-hematopoietic cells. Here,we review evidence for the regulation of non-
hematopoietic cells by inhibitory receptors, focusing on epithelial and endothelial cells.
We explain that inhibitory receptors on these cells can sense a wide range of signals,
including cell-cell adhesion, cell-matrix adhesion, and apoptotic cells. More importantly,
they regulate various functions on these cells, including immune activation, prolifera-
tion, andmigration. In conclusion, we propose that inhibitory receptors provide context to
non-hematopoietic cells by fine tuning their response to endogenous or microbial stim-
uli. These findings prompt to investigate the functions of inhibitory receptors on non-
hematopoietic cells more systematically.
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Introduction

Similar to immune cells, non-hematopoietic cells express pattern
recognition receptors and can be in contact with microbial
and endogenous patterns [1–4]. Their response to these stimuli
depends on the situation. For example, exposure of epithelial cells
to a certain microbe can be harmless when the epithelial barrier
is intact, whereas the same microbe can be dangerous when
the barrier is breached. In the latter case, epithelial cells should
become activated and produce inflammatory cytokines to recruit
immune cells, which in turn kill microbes at the wound interface
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and contribute to tissue repair [5]. Thus, non-hematopoietic cells
need to sense the context in which they receive a microbial or
endogenous stimulus.

We previously argued that inhibitory receptors can provide
context to immune cells by acting as negative feedback receptors
or as threshold receptors. Negative feedback receptors are upregu-
lated after activation to terminate the immune response, whereas
threshold receptors are expressed on non-activated cells and pro-
vide a threshold to prevent unnecessary immune activation, for
instance, in response to harmless stimuli [6]. We also recently
reviewed that multiple inhibitory receptors recognize endogenous
and microbial patterns that can indicate danger, homeostasis, or
both [7]. As such, these inhibitory pattern recognition receptors
(iPRRs) can form a regulatory counterpart to activating PRRs.
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We proposed that regulation by iPRRs may occur mostly in tis-
sues that require a high activation threshold, such as tissues that
face continuous microbial exposure (e.g., barrier tissues such as
the intestine and skin) or tissues that have low tolerance for
immunopathology (e.g., the brain, heart, or eyes) [7]. Mechanis-
tically, inhibitory receptors usually contain an ITIM, or in some
cases an immunoreceptor tyrosine-based switch motif (ITSM),
which becomes phosphorylated upon receptor ligation. This leads
to the recruitment of Src homology-2 (SH2) domain-containing
inhibitory effectors such as SH2 domain-containing phosphatases
(SHP)-1, SHP-2, SH2 domain-containing inositol 5’phosphatase
(SHIP), or C-terminal Src kinase (Csk), which in turn inhibit the
signaling of activating receptors [8, 9].

Even though inhibitory receptors are almost exclusively stud-
ied in hematopoietic cells, several of these receptors are expressed
on non-hematopoietic cells. In this review, we examine the evi-
dence for the regulation of non-hematopoietic cells by ITIM-
bearing inhibitory receptors. Herein, we focus on the regulation of
epithelial cells and endothelial cells, for two reasons. First, these
cells are located in barrier tissues and thus provide an example
of cells that may particularly benefit from regulation by inhibitory
receptors. Second, studies which have addressed ITIM-dependent
signaling on non-hematopoietic cells are sufficiently available for
epithelial cells and endothelial cells, while only limited for other
cell types. Since some inhibitory receptors have multiple func-
tions, we only regard ITIM-dependent signaling as an inhibitory
receptor function.

Inhibitory receptors on epithelial cells

Epithelial cells express iPRRs

The immune function of epithelial cells comprises two major
tasks: i) maintaining tissue integrity to prevent microbial inva-
sion, which requires cell adhesion, proliferation, and migration,
and ii) forming the first line of defense of the immune system
by secreting inflammatory mediators. All of these functions could
potentially be controlled by inhibitory receptors. Indeed, epithe-
lial cells express several inhibitory receptors. They widely express
CEACAM1 (also known as CD66a) and PVR (also known as Necl-
5 or CD155) [10, 11], while CD300LF expression is restricted
to tuft cells, a rare secretory epithelial cell with immune-related
functions [12]. All three receptors contain one or more intra-
cellular ITIMs and are known to inhibit the immune functions
of hematopoietic cells, although PVR has been primarily studied
as a ligand for other immune receptors [13–15]. Of note, these
are inhibitory receptors of which expression on epithelial cells
has been described in the literature. However, RNA sequencing
databases such as protein atlas report that some epithelial cell
types may express more inhibitory receptors, albeit at lower levels
than in immune cells [16]. This requires further validation on pro-
tein level. In addition, the human genome encodes many unchar-
acterized genes potentially encoding for ITIM-bearing receptors,
which could also be expressed on epithelial cells [9].

CEACAM1, PVR, and CD300LF are pleiotropic receptors, each
responding to multiple endogenous and microbial patterns ([17,
18] and reviewed in [7]). CEACAM1 binds itself, other CEA-
CAMs, and microbial Ig-fold proteins. PVR binds the adhesion
molecule Nectin-3, the matrix protein vitronectin, the immune
receptors TIGIT, CD96, and DNAM-1, and forms the entry receptor
for poliovirus. CD300LF binds phosphatidylserine (PS) and phos-
phatidylethanolamine (PE) on apoptotic cells and forms the entry
receptor for murine norovirus (but not for human norovirus).
This ligand repertoire classifies these receptors as iPRRs [7] in
agreement with a regulatory role in barrier tissues that are highly
exposed to microbial patterns.

Inhibitory receptors on epithelial cells regulate
proliferation, immune activation, and migration

Which functions do these inhibitory receptors regulate on epithe-
lial cells? Firstly, CEACAM1 and PVR both contribute to cell-cell
adhesion by interacting in trans with respectively CEACAM1 or
Nectin-3 on neighboring epithelial cells [19, 20]. In addition, PVR
can mediate cell-matrix contact by binding to vitronectin [17].
For PVR it has not been addressed whether the ITIM is required
for cell adhesion, but cell adhesion mediated by CEACAM1 is
ITIM-independent [21]. However, trans homophilic interaction
between CEACAM1 on neighboring cells does induce CEACAM1
ITIM phosphorylation and SHP-2 recruitment [22]. This has
multiple potential functional consequences. First, CEACAM1 is
already known for 25 years to inhibit proliferation of epithelial
cells [21, 23, 24]. This involves ITIM-mediated signaling: CEA-
CAM1 overexpression in human lung epithelial cells inhibits cell
growth in confluent cell layers, whereas cells with overexpres-
sion of CEACAM1 in which the tyrosines of both ITIMs have been
mutated to phenylalanine to abrogate signaling (Y459F/Y486F)
continue to proliferate and overgrow [25]. Second, CEACAM1
signaling may affect cell migration, although contradicting find-
ings are reported: CEACAM1 overexpression inhibits migration of
MC38 colon epithelial cells in an ITIM-dependent manner [26],
but others have found that CEACAM1 overexpression enhances
migration of HT-29 and Caco-2 colon epithelial cells [27, 28].
Third, CEACAM1 can dampen immune activation of epithelial
cells, as it inhibits TLR2-induced IL-8 production by airway epithe-
lial cells in response to its endogenous ligand CEACAM8 [29]
and its microbial ligands from Moraxella catarrhalis and Neisse-
ria meningitides [30]. Using HEK293T cells, inhibition of the M.
catarrhalis-induced TLR2 response was shown to require Y459
but not Y486 [30]. Notably, the requirement of ITIM-mediated
signaling to the function of these receptors is not always specifi-
cally addressed, and thus requires further examination. For exam-
ple, the interaction between CEACAM1 and HopQ from Helicobac-
ter pylori has been shown to induce ITIM phosphorylation and
enhanced IL-8 release [31], but it was not addressed whether
ITIM-mediated signaling is responsible for this immune-activating
effect.
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For PVR and CD300LF, ITIM activation and the functional con-
sequence thereof has to our knowledge not been addressed in
epithelial cells. However, studies using fibroblast cell lines with
receptor overexpression indicate that these receptors have the
capacity for ITIM-mediated signaling in non-hematopoietic cells
and may provide hints toward their function on epithelial cells.
PVR ligation inhibits fibroblast adhesion to fibronectin while it
enhances cell migration, which is abolished by ITIM mutation or
co-expression of a dominant negative SHP-2 mutant [32]. In line
with this, several other studies show that PVR enhances fibrob-
last migration, albeit without addressing the requirement of ITIM
phosphorylation (reviewed in ref. [33]). In addition, PVR has
been shown to enhance fibroblast proliferation, which is reversed
upon cell-cell contact-induced endocytosis of PVR [34], posing
a different potential mechanism by which an inhibitory recep-
tor may prevent cell overgrowth. However, again the involve-
ment of ITIM signaling was not addressed. CD300LF overexpres-
sion in fibroblasts positively regulates phagocytosis of apoptotic
cells by recognition of PS [35]. Phagocytosis increases even fur-
ther after Y→F mutation of Y241, Y289, or Y325, which are
the central tyrosines of two ITIMs and an ITSM motif, respec-
tively. In contrast, phagocytosis decreases after mutation of Y276
which is present in a binding site for the PI3K subunit p85α [35].
Together, this indicates that CD300LF can simultaneously trans-
mit inhibitory signals via its ITIMs and activating signals via its
p85α-binding motif.

In summary, inhibitory receptors may regulate various pro-
cesses on epithelial cells, including proliferation, immune activa-
tion, and migration. However, more studies are needed to specif-
ically address the requirement of ITIM signaling of inhibitory
receptors on epithelial cells.

Splice isoform expression affects function and
localization of inhibitory receptors

One factor that may cause variable outcomes of inhibitory recep-
tor ligation is the differential expression of isoforms that do or
do not contain intracellular signaling motifs, as a result of alter-
native splicing. PVRα and CEACAM1-L isoforms contain a long
intracellular tail with ITIMs, as opposed to PVRδ and CEACAM1-
S isoforms with a short intracellular tail and no ITIMs (reviewed
in [36, 37]). CEACAM1-S not only lacks ITIM-mediated signal-
ing, but also interferes with signaling of CEACAM1-L by dis-
rupting the formation of CEACAM1-L-cis dimers, which leads to
decreased recruitment of SHP-2 [22]. Interestingly, differential
expression of CEACAM1-L/S isoforms may regulate the function
of CEACAM1 in different contexts. For example, a low L:S ratio
is found in subconfluent, proliferating cells, whereas a high L:S
ratio is found in confluent rat epithelial cells [38]. Thus, predom-
inant CEACAM1-L expression may inhibit proliferation in conflu-
ent epithelium, while predominant CEACAM1-S expression may
counteract the growth-inhibitory effect of CEACAM1-L in prolifer-
ating, sub-confluent epithelial layers.

Additionally, the ITIMs of CEACAM1 and PVR act as sorting
signal in polarized epithelial cells. CEACAM-S is only localized
on the apical surface of epithelial cells, whereas CEACAM-L is
localized on the apical and lateral surface [39]. For this lateral
sorting, Y515 but not Y488 is needed [40]. PVRδ is expressed
on the apical and basolateral surface of polarized epithelial cells,
whereas PVRα is only localized on the basolateral surface, which
depends on interaction between the tyrosine in its ITIM motif
and the mu1B subunit of the clathrin adaptor complex [41].
The localization of ITIM-containing isoforms may indicate that
these inhibitory receptors preferentially respond to basolateral
ligation such as contact with neighboring cells. It remains to be
determined whether this also leads to preferential suppression of
basolateral activating signals, e.g., due to the limited molecular
reach of phosphatases such as SHP-1 [42], or whether basolat-
eral inhibitory receptors can also suppress signals received at the
apical side. Importantly, some activating PRRs such as TLR3 and
TLR5 are also preferentially expressed on the basolateral side of
epithelial cells [43, 44]. This may indicate that tissue damage and
basolateral pathogen invasion can activate epithelial cells with a
double kick: by increased stimulation of activating PRRs, while
concurrently releasing the break of inhibitory PRRs.

Additional factors can affect inhibitory receptor function on
epithelial cells. For example, CEACAM1 function can be controlled
by proteolytic cleavage of its ectodomain and intracellular domain
[45, 46], and by altered expression of CEACAM5 and CEACAM6
[25]. Taken together, inhibitory receptor function is controlled by
a complex interplay of splice isoform expression, subcellular local-
ization, ligand expression, and posttranslational modifications.

Inhibitory receptors provide context to epithelial cells

In conclusion, epithelial cells express inhibitory receptors through
which they can sense a wide range of signals which give infor-
mation on their context, including cell-cell adhesion, cell-matrix
adhesion, apoptotic cells, and presence of microbes (Fig. 1).
Moreover, these receptors have the potential to inhibit cellular
processes in epithelial cells such as proliferation and immune acti-
vation, as has been shown for CEACAM1. Based on these findings,
we propose that inhibitory receptors on epithelial cells can fine
tune their responses to external events depending on the context.
For example, interaction between CEACAM1 molecules on adja-
cent cells may indicate that the epithelial barrier is intact, thereby
signalling that proliferation or an immune response is not needed.
In other words, CEACAM1 may signal a context of safety.

In contrast, pathogens such as M. catarrhalis and N. meningi-
tidis may exploit this by ligating CEACAM1 to evade immune acti-
vation. Similarly, poliovirus and norovirus may benefit from ITIM-
mediated immune inhibition via respectively PVR and CD300LF.
Pathogens that bind CEACAM1 have also been shown to inhibit
exfoliation of infected epithelial cells, by enhancing epithelial cell
binding [47, 48]. However, this effect is shared by other CEACAMs
which do not contain an ITIM, and is therefore most likely medi-
ated by the adhesive properties of CEACAMs rather than ITIM
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Figure 1. Inhibitory receptors on epithelial cells can sense several signals such as cell–cell contact (e.g., CEACAM1 with CEACAM1 or other CEA-
CAMs), cell–matrix contact (e.g., PVR–vitronectin), apoptotic cells (e.g., CD300LF–PS/PE), or presence of microbes (e.g., CEACAM1–Neisseria species).
These interactions potentially control proliferation, immune activation, and migration. The figure was created with biorender.com.

signaling. Notably, CEACAM1 also binds Opa adhesins expressed
by commensal Neisseriae species, although the functional conse-
quence of this interaction has not been addressed [49]. It would
be interesting to investigate if such interactions could also be of
benefit to the host, by dampening immune activation to microbes
in locations in which an immune response would do more harm
than good.

Inhibitory receptors on endothelial cells

Endothelial cells express inhibitory receptors that
recognize cell–cell contact

Just like epithelial cells, endothelial cells have context-dependent
immune functions. For instance, they need to maintain vascu-
lar integrity, while also allowing leukocyte transmigration dur-
ing inflammation. Endothelial cells can be exposed to microbial
patterns during infection, and to a wide variety of endogenous
stimuli such as DAMPs and cytokines [50]. Thus, endothelial cells
require regulation to ensure appropriate responses to these stim-
uli, indicating a potential role for inhibitory receptors.

Endothelial cells express several inhibitory receptors, of which
PECAM-1 (also known as CD31) is a well-known marker for
endothelium [51]. In addition, they express CEACAM1 [52], PVR
[53], and, in some tissues, SIRPα (also known as SHPS-1) [54,
55]. SIRPα and PECAM-1 have extensively been studied for their
immune inhibitory function on hematopoietic cells [56, 57]. As
in epithelial cells, these receptors may signal tissue integrity. All
of them interact in trans with ligands expressed on neighboring

cells, namely CEACAM1 with CEACAM1, PECAM-1 with PECAM-
1, PVR with Nectin-3, and SIRPα with CD47 [57–59]. In addi-
tion, their ligands are expressed on leukocytes, indicating poten-
tial interaction with transmigrating leukocytes. Lastly, PECAM-1
has been shown to act as a mechanosensor, as it becomes rapidly
ITIM phosphorylated and recruits SHP-2 upon fluid sheer stress
and direct mechanical pressure [60], although this was not found
in primary human endothelial cells ex vivo [61]. What is the con-
sequence of these interactions?

Inhibitory receptors on endothelial cells regulate
endothelial cell migration and leukocyte diapedesis

PECAM-1 resembles CEACAM1 in its function, as trans homophilic
PECAM-1 and CEACAM1 interactions both contribute to endothe-
lial cell-cell adhesion and vascular integrity (reviewed in [62,
63]). For PECAM-1 this has been shown to be ITIM-independent
[64]. Conversely, trans homophilic PECAM-1 interaction may
induce ITIM phosphorylation, as PECAM-1 becomes phosphory-
lated after binding to immobilized PECAM-1 [65]. This has sev-
eral potential functional outcomes. Firstly, several studies show
that PECAM-1 enhances endothelial cell migration (reviewed in
[51]), although mixed results are found on whether ITIM sig-
naling positively or negatively contributes to this. Some stud-
ies report increased PECAM-1 ITIM phosphorylation in conflu-
ent cell cultures and ITIM-mediated inhibition of cell migra-
tion [66, 67], whereas others show the exact inverse, namely
increased ITIM phosphorylation in wounded cell cultures and
ITIM-mediated enhancement of cell migration [68, 69]. Of note,
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Figure 2. Inhibitory receptors on endothelial cells can sense contact with neighboring endothelial cells, transmigrating leukocytes or mechanical
force. These interactions potentially control apoptosis, migration, and leukocyte transendothelial migration. The figure was created with bioren-
der.com.

the latter studies used PECAM-1 transfected REN mesothelial
cells as a substitute for endothelial cells. In support for pro-
migratory effects of inhibitory receptor signaling on endothelial
cells, CEACAM1 increases endothelial cell migration in an Y488-
dependent manner [70]. Similarly, SIRPα increases the migra-
tion of melanoma and CHO cells via its ITIMs, suggesting it may
have a similar function on endothelial cells [71]. Thus arguably
the most consistent finding is that inhibitory receptor signal-
ing enhances endothelial cell migration. Mechanistically, this has
been explained by SHP-2-mediated RhoA regulation, although
controversy exists on whether SHP-2 activates [72] or inhibits
[73] RhoA, and de-phosphorylation of focal adhesion components
such as paxillin, which in turn increases the turnover of focal
adhesions [68, 69]. Still, increased PECAM-1 tyrosine phospho-
rylation in wounded cell cultures seems counterintuitive, as one
may expect that wounding induces loss of cell-cell contact and
thereby decreased trans homophilic PECAM-1 ligation. Interest-
ingly though, wounding-induced PECAM-1 ITIM phosphorylation
occurs independent of homophilic binding [74], indicating a dif-
ferent ligand for PECAM-1 in this setting.

Second, endothelial cell-expressed PECAM-1, PVR, and SIRPα

all have been shown to facilitate leukocyte transendothelial
migration (TEM) upon interaction with their leukocyte-expressed
ligands [55, 75–77]. Mechanistically, this was suggested to
involve targeting of PECAM-1 toward the membrane engulfing
the translocating leukocyte, which required Y663 but not SHP-2
recruitment [78]. However, two recent independent studies con-

firm that PECAM-1 and SIRPα mediate TEM in an ITIM- and
SHP-2-dependent manner [55, 79]. Remarkably, for PECAM-1
this seems to require its inactivation rather than activation, as
contact with leukocytes decreases PECAM-1 ITIM phosphorylation
and SHP-2 recruitment, while SHP-2 is targeted to VE-cadherin
instead [79]. As a functional consequence thereof, VE-cadherin
is internalized, leading to the loosening of endothelial junctions
[55, 79]. Possibly, these different proposed mechanisms repre-
sent distinct steps in how inhibitory receptors mediate TEM. For
example, the ITIM may first serve as a sorting signal to target
the inhibitory receptor to the membrane engulfing the leukocyte,
where it becomes phosphorylated to recruit SHP-2, after which it
becomes dephosphorylated to transfer SHP-2 to VE-cadherin. In
support, PECAM-1 is itself a substrate of SHP-2 [68].

Inhibitory receptor function may again be affected by differ-
ential expression of splice isoforms. In addition to its full-length
form with two ITIMs, PECAM-1 contains isoforms that lack one
or both ITIMs. In human endothelial cells, the full-length form
of PECAM1 is predominantly expressed, while murine endothe-
lial cells abundantly express the �14,15 isoform which lacks one
ITIM (reviewed in [80]). In contrast, SIRPα does not express an
ITIM-less isoform but instead an isoform that lacks a large part of
the extracellular domain, which may affect its ligation [81].

In summary, inhibitory receptor signaling on endothelial cells
has the potential to regulate endothelial cell migration and TEM
(Fig. 2). Studies on the underlying mechanism are partially con-
flicting and may be resolved by further investigations that include

© 2023 The Authors. European Journal of Immunology published by
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ITIM mutants, SHP-2 mutants and the monitoring of ITIM phos-
phorylation across several time points, in addition to controlling
factors that may influence inhibitory receptor signaling such as
cell density and expression of splice isoforms.

Inhibitory receptors on endothelial cells may protect
endothelial integrity

Another special feature of the endothelium is its resistance to cell
death, as it needs to withstand high concentrations of inflam-
matory mediators during inflammation while maintaining its
integrity. This becomes evident in patients with allograft rejection,
where host effector T cells damage the donor organ while the
donor capillary endothelium remains relatively unharmed [82].
Remarkably, PECAM-1 is sufficient to confer resistance against
TNF and cytotoxic T lymphocytes to vascular endothelium, which
requires both of its ITIMs and correlates with SHP-2 recruitment
and Erk/Akt pathway activation [83]. In addition, both PECAM-1
and PVR inhibit apoptosis induced by serum starvation [65, 84,
85]. Together with the ability of inhibitory receptors to enhance
endothelial cell migration, these findings suggest that inhibitory
receptors on endothelial cells may protect endothelial integrity,
not only by acting as adhesion molecules, but also by inhibiting
apoptosis and by enhancing migration in an ITIM-dependent man-
ner. This may be of particular relevance during inflammation or
wounding, where endothelial integrity is challenged. In support,
mice with endothelial cell-specific PECAM-1 deficiency only have
a mild phenotype under homeostatic conditions, but show exag-
gerated inflammation and vascular permeability in inflammatory
disease models, although it remains to be determined whether
this phenotype is caused by a lack of ITIM signaling ([86] and
reviewed in [57]). Perhaps surprising in this regard is the find-
ing that inhibitory receptors mediate TEM, as this is considered a
pro-inflammatory function. How and why these functions concur
needs to be a topic of future investigation.

Inhibitory receptors on non-hematopoietic
cells: Role in disease

In line with the regulation of cell growth and migration by
inhibitory receptors, several non-hematopoietic malignancies
show aberrant inhibitory receptor expression, including CEA-
CAM1 and PVR (reviewed in [87, 88]). Whether expression is
preferentially up- or down-regulated may depend on the domi-
nant function of the particular receptor in that setting. For exam-
ple, CEACAM1 expression is abolished in several epithelial malig-
nancies in line with its growth-suppressive effects, whereas in
other epithelial malignancies, CEACAM1 expression is linked to
metastatic spread, which may be related to its ability to enhance
cell migration [88]. Altered expression may also include aberrant
isoform expression; malignant cells of non-small cell lung carcino-
mas patients express predominantly CEACAM-S, whereas healthy-
appearing lung epithelial cells of the same patients express pre-

dominantly CEACAM1-L [89]. Some non-hematopoietic malig-
nancies even express the inhibitory receptor PD1 [90], which
is usually exclusively expressed by immune cells. Importantly,
these findings indicate that inhibitory receptor blockade in can-
cer immunotherapy may have side effects on non-hematopoietic
cells expressing the targeted receptor, which may concern healthy
tissue and/or the non-hematopoietic malignancy itself. Indeed,
PD1 blockade has been shown to affect tumor-cell intrinsic PD1
signaling, albeit with the dual outcome, with studies indicating
enhanced lung carcinoma growth [91] but decreased melanoma
growth [92] as a result of tumor-cell intrinsic PD1 blockage.

Not only malignancies but also pathogens can exploit
inhibitory receptors on non-hematopoietic cells, such as binding
of pathogenic Neisseria species to CEACAM1, poliovirus to PVR,
and murine norovirus to CD300LF. Similarly, Clostridium perfrin-
gens and Streptococcus pneumoniae have been shown to target
PECAM-1 to bind to the endothelium and invade underlying tissue
[93, 94].

To further understand the role of inhibitory receptors in non-
hematopoietic malignancies and infection biology, future studies
should differentiate between ITIM-dependent and -independent
functions. For example, PVR is also implicated in malignancies
due to its function as a ligand of TIGIT on NK cells and T
cells, where it inhibits cytotoxic activity towards cancer cells and
thereby promotes tumor growth [87]. Similarly, it is not always
addressed to what extent pathogens use inhibitory receptors for
adhesion or also to benefit from ITIM-mediated signaling.

Inhibitory receptors on non-hematopoietic
cells in expensive tissues

We focused this review on non-hematopoietic cells that are
present in barrier tissues—an environment that is characterized
by its high exposure to microbes and other exogenous stim-
uli. As we previously argued, cells in this environment benefit
from a high activation threshold to prevent unnecessary immune
activation [7]. A high activation threshold may also be benefi-
cial in so-called expensive tissues such as the heart, brain, and
eyes, which are characterized by a low regenerative capacity and
therefore also a low tolerance to immunopathology [7]. Notably,
non-hematopoietic cells in these tissues do express PRRs. For
example, neurons express TLR2 and TLR4, which contribute to
ischemia-induced neuronal cell death [95]. Therefore, to prevent
overzealous PRR signaling, “expensive” cells may also be regu-
lated by inhibitory receptors. In support, neurons widely express
PD1 and SIRPα (reviewed by [96, 97]), and PD1 ligation in neu-
rons inhibits neuronal excitability and pain via SHP-1 [98]. SIRPα

and PD1 expression is also found on neurons in the retina [99,
100]. Likewise, SIRPα is expressed on human cardiomyocytes
[101, 102] and protects against cardiac hypertrophy via inhibi-
tion of TLR4 signaling [103]. In summary, inhibitory receptors
may regulate non-hematopoietic cells in various tissues. This may
occur especially in cells or tissues that benefit from a high activa-
tion threshold, such as expensive tissues.

© 2023 The Authors. European Journal of Immunology published by
Wiley-VCH GmbH
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Discussion and future perspective

Here, we reviewed the evidence for the regulation of non-
hematopoietic cells by inhibitory receptors. Based on the
described findings, we propose that inhibitory receptors not only
provide context to immune cells but also to non-hematopoietic
cells. For example, inhibitory receptors on epithelial cells can
sense cell–cell contact and thereby signal that an immune
response or proliferation is not needed. In contrast, on endothe-
lial cells, sensing of cell wounding by inhibitory receptors may
stimulate cell migration to re-establish barrier integrity, indicating
cell-specific functions of inhibitory receptors. Seemingly counter-
intuitive, some of the described inhibitory receptor functions are
activating rather than inhibitory, but it should be kept in mind
that negative regulation of an inhibitory process leads to a posi-
tive outcome. For example, inhibition of cell adhesion leads to the
enhancement of cell motility and migration. Likewise, at a signal-
ing level, SHP-2 causes activation of ras/ERK/MAPK pathway by
dephosphorylating negative regulators of this pathway (reviewed
by [104]).

Taken together, there is a clear need to investigate the func-
tions of inhibitory receptors on non-hematopoietic cells more
specifically and systematically. Not only because of their poten-
tial involvement in disease, but also because some of these recep-
tors are (potential) therapeutic targets as immune checkpoints,
such as CEACAM1 and PVR [105–107], which may affect non-
hematopoietic cells expressing the same receptor. Importantly,
many of the described studies have been done using cancer cell
lines, and thus need to be repeated in vivo, in primary cells in vitro
(whenever possible), or in intermediate models such as organoids.
Experiments with inhibitory receptors with mutated ITIMs and/or
mutants of downstream phosphatases will help clarify the down-
stream signaling. Lastly, more than sixty inhibitory receptors have
been functionally characterized, but over 300 putative ITIM-
bearing receptors are encoded in the human genome [9]. This
raises the possibility that non-hematopoietic cells are regulated by
several additional inhibitory receptors that help them to respond
appropriately to their environment.
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