99 research outputs found

    Automatic identification and classification of compostable and biodegradable plastics using hyperspectral imaging

    Get PDF
    In the UK waste management systems biodegradable and compostable packaging are not automatically detected and separated. As a result, their fate is generally landfill or incineration, neither of which is an environmentally good outcome. Thus, effective sorting technologies for compostable plastics are needed to help improve composting rates of these materials and reduce the contamination of recycling waste streams. Hyperspectral imaging (HSI) was applied in this study to develop classification models for automatically identifying and classifying compostable plastics with the analysis focused on the spectral region 950–1,730 nm. The experimental design includes a hyperspectral imaging camera, allowing different chemometric techniques to be applied including principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) to develop a classification model for the compostable materials plastics. Materials used in this experimental analysis included compostable materials (sugarcane-derived and palm leaf derived), compostable plastics (PLA, PBAT) and conventional plastics (PP, PET, and LDPE). Our strategy was to develop a classification model to identify and categorize various fragments over the size range of 50 x 50 mm to 5 x 5 mm. Results indicated that both PCA and PLS-DA achieved classification scores of 100% when the size of material was larger than 10 mm x 10 mm. However, the misclassification rate increased to 20% for sugarcane-derived and 40% for palm leaf-based materials at sizes of 10 x 10 mm or below. In addition, for sizes of 5 x 5 mm, the misclassification rate for LDPE and PBAT increased to 20%, and for sugarcane and palm-leaf based materials to 60 and 80% respectively while the misclassification rate for PLA, PP, and PET was still 0%. The system is capable of accurately sorting compostable plastics (compostable spoons, forks, coffee lids) and differentiating them from identical looking conventional plastic items with high accuracy

    The performance and environmental impact of pro-oxidant additive containing plastics in the open unmanaged environment—a review of the evidence

    Get PDF
    Pro-oxidant additive containing (PAC) plastics is a term that describes a growing number of plastics which are designed to degrade in the unmanaged natural environment (open-air, soil, aquatic) through oxidation and other processes. It is a category that includes ‘oxo-degradable’ plastics, ‘oxo-biodegradable’ plastics and those containing ‘biotransformation’ additives. There is evidence that a new standard PAS 9017 : 2020 is relevant to predicting the timescale for abiotic degradation of PAC plastic in hot dry climates under ideal conditions (data reviewed for South of France and Florida). There are no reliable data to date to show that the PAS 9017 : 2020 predicts the timescale for abiotic degradation of PAC plastics in cool or wet climatic regions such as the UK or under less ideal conditions (soil burial, surface soiling etc.). Most PAC plastics studied in the literature showed biodegradability values in the range 5–60% and would not pass the criteria for biodegradability set in the new PAS 9017 : 2020. Possible formation of microplastics and cross-linking have been highlighted both by field studies and laboratory studies. Systematic eco-toxicity studies are needed to assess the possible effect of PAC additives and microplastics on the environment and biological organisms

    Facile and selective N-alkylation of gentamicin antibiotics via chemoenzymatic synthesis

    Get PDF
    The rise and spread of antimicrobial resistance has necessitated the development of novel antimicrobials which are effective against drug resistant pathogens. Aminoglycoside antibiotics (AGAs) remain one of our most effective classes of bactericidal drugs. However, they are challenging molecules to selectively modify by chemical synthesis, requiring the use of extensive protection and deprotection steps leading to long, atom- and step-inefficient synthetic routes. Biocatalytic and chemoenzymatic approaches for the generation of AGA derivatives are of interest as they allow access to more concise and sustainable synthetic routes to novel compounds. This work presents a two-step chemoenzymatic route to regioselectively modify the C-6′ position of AGAs. The approach uses a transaminase enzyme to generate an aldehyde on the C-6′ position in the absence of protecting groups, followed by reductive amination to introduce substituents selectively on this position. Seven candidate transaminases were tested for their ability to deaminate a panel of commercially available AGAs. The C-6′ transaminases could deaminate both pseudo di- and trisaccharide AGAs and tolerate the presence or absence of hydroxyl groups on the C-3′- and C-4′-positions. Additionally, sugar substituents on the C-6 hydroxyl were accepted but not on the C-5 hydroxyl. The most promising enzyme, GenB4, was then coupled with a reductive amination step to synthesise eleven novel 6′-gentamicin C1a analogues with conversions of 13–90%. Five of these compounds were active antimicrobials and four of these retained activity against an aminoglycoside-resistant Escherichia coli. This approach allows facile and step-efficient access to novel aminoglycoside compounds under mild reaction conditions and could potentially enable the development of greener, sustainable, and more cost-effective syntheses of novel AGAs

    Chemoenzymatic approaches to plant natural product inspired compounds

    Get PDF
    Complex molecules produced by plants have provided us with a range of medicines, flavour and fragrance compounds and pesticides. However, there are challenges associated with accessing these in an economically viable manner, including low natural abundance and the requirement for complex multi-step synthetic strategies. Chemoenzymatic approaches provide a valuable alternative strategy by combining traditional synthetic methods with biocatalysis. This review highlights recent chemoenzymatic syntheses towards plant natural products and analogues, focusing on the advantages of incorporating biocatalysts into a synthetic strategy

    Stereoselective Transaminase-Mediated Synthesis of Serotonin and Melatonin Receptor Agonists

    Get PDF
    Transaminase enzymes have significant potential for the stereoselective synthesis of drugs or drug precursors. Here, starting from one prochiral β-tetralone, a short and efficient chemoenzymatic synthesis of four agonists of the serotonin/melatonin receptors have been developed. The key step is the stereoselective transamination of the prochiral ketone to produce both enantiomers of 8-methoxy-2-aminotetraline in high yields and enantiomeric excesses. This was followed by either amidation to give the 8-methoxy-2-acetimidotetralines or several facile chemical steps to the 8-hydroxy-2-aminodipropyltetralines

    The use of tyrosinases in a chemoenzymatic cascade as a peptide ligation strategy

    Get PDF
    Peptides play many key roles in biological systems and numerous methods have been developed to generate both natural and unnatural peptides. However, straightforward, reliable coupling methods that can be achieved under mild reactions conditions are still sought after. In this work, a new N-terminal tyrosine-containing peptide ligation method with aldehydes, utilising a Pictet–Spengler reaction is described. In a key step, tyrosinase enzymes have been used to convert L-tyrosine to L-3,4-dihydroxyphenyl alanine (L-DOPA) residues, generating suitable functionality for the Pictet–Spengler coupling. This new chemoenzymatic coupling strategy can be used for fluorescent-tagging and peptide ligation purposes

    Enzymatic synthesis of benzylisoquinoline alkaloids using a parallel cascade strategy and tyrosinase variants

    Get PDF
    Benzylisoquinoline alkaloid derived pharmaceuticals are widely applied in modern medicines. Recent studies on the microbial production of benzylisoquinolines have highlighted key biological syntheses towards these natural products. Routes to non-natural benzylisoquinolines have been less explored, particularly halogenated compounds which are more challenging. Here, we show the use of a tyrosinase, tyrosine decarboxylase, transaminase, and norcoclaurine synthase which are combined in a parallel cascade design, in order to generate halogenated benzylisoquinoline alkaloids in high enantiomeric excess. Notably, mutagenesis studies are applied to generate tyrosinase mutants, which enhance the acceptance of halogenated tyrosines for use in the biocatalytic cascades developed

    The Effect of Conjugation on the Competition Between Internal Conversion and Electron Detachment: A Comparison Between Green Fluorescent and Red Kaede Protein Chromophores

    Get PDF
    Kaede, an analogue of green fluorescent protein (GFP), is a green-to-red photoconvertible fluorescent protein used as an in vivo ‘optical highlighter’ in bioimaging. The fluorescence quantum yield of the red Kaede protein is lower than that of GFP, suggesting that increasing the conjugation modifies the electronic relaxation pathway. Using a combination of anion photoelectron spectroscopy and electronic structure calculations, we find that the isolated red Kaede protein chromophore in the gas phase is deprotonated at the imidazole ring, unlike the GFP chromophore that is deprotonated at the phenol ring. We find evidence of an efficient electronic relaxation pathway from higher lying electronically excited states to the S1 state of the red Kaede chromophore that is not accessible in the GFP chromophore. Rapid autodetachment from high lying vibrational states of S1 is found to compete efficiently with internal conversion to the ground electronic state

    Enzyme catalysed Pictet-Spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydroisoquinolines

    Get PDF
    The Pictet-Spengler reaction (PSR) involves the condensation and ring closure between a β-arylethylamine and a carbonyl compound. The combination of dopamine and ketones in a PSR leads to the formation of 1,1′-disubstituted tetrahydroisoquinolines (THIQs), structures that are challenging to synthesize and yet are present in a number of bioactive natural products and synthetic pharmaceuticals. Here we have discovered that norcoclaurine synthase from Thalictrum flavum (TfNCS) can catalyse the PSR between dopamine and unactivated ketones, thus facilitating the facile biocatalytic generation of 1,1′-disubstituted THIQs. Variants of TfNCS showing improved conversions have been identified and used to synthesize novel chiral 1,1′-disubstituted and spiro-THIQs. Enzyme catalysed PSRs with unactivated ketones are unprecedented, and, furthermore, there are no equivalent stereoselective chemical methods for these transformations. This discovery advances the utility of enzymes for the generation of diverse THIQs in vitro and in vivo

    Multi-enzyme catalysed processes using purified and whole-cell biocatalysts towards a 1,3,4-substituted tetrahydroisoquinoline

    Get PDF
    In this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented. A key focus was the first step in which the reduction of 3-hydroxybenzoic acid (3-OH-BZ) into 3-hydroxybenzaldehyde (3-OH-BA) was catalysed by a carboxylate reductase (CAR) enzyme. Incorporation of the CAR-catalysed step enables substituted benzoic acids as the aromatic components, which can potentially be obtained from renewable resources by microbial cell factories. In this reduction, the implementation of an efficient cofactor regeneration system of both ATP and NADPH was crucial. Two different recycling approaches, either using purified enzymes or lyophilised whole-cells, were established and compared. Both of them showed high conversions of the acid into 3-OH-BA (>80%). However, the whole-cell system showed superior performance because it allowed the combination of the first and second steps into a one-pot cascade with excellent HPLC yields (>99%, enantiomeric excess (ee) ≥ 95%) producing the intermediate 3-hydroxyphenylacetylcarbinol. Moreover, enhanced substrate loads could be achieved compared to the system employing only purified enzymes. The third and fourth steps were performed in a sequential mode to avoid cross-reactivities and the formation of several side products. Thus, (1R,2S)-metaraminol could be formed with high HPLC yields (>90%, isomeric content (ic) ≥ 95%) applying either purified or whole-cell transaminases from Bacillus megaterium (BmTA) or Chromobacterium violaceum (Cv2025). Finally, the cyclisation step was performed using either a purified or lyophilised whole-cell norcoclaurine synthase variant from Thalictrum flavum (ΔTfNCS-A79I), leading to the formation of the target THIQ product with high HPLC yields (>90%, ic > 90%). As many of the educts applied are from renewable resources and a complex product with three chiral centers can be gained by only four highly selective steps, a very step- and atom efficient approach to stereoisomerically pure THIQ is shown
    • …
    corecore