62 research outputs found

    A comparison of ocean model data and satellite observations of features affecting the growth of the North Equatorial Counter Current during the strong 1997-1998 El Nino

    Get PDF
    Descriptions of the ocean's role in the El Niño usually focus on equatorial Kelvin waves and the ability of such waves to change the mean thermocline depth and the sea surface temperature (SST) in the central and eastern Pacific. In contrast, starting from a study of the transport of water with temperatures greater than 28 ∘C, sufficient to trigger deep atmospheric convection, Webb (2018) found that, during the strong El Niños of 1983–1984 and 1997–1998, advection by the North Equatorial Counter Current (NECC) had a much greater impact on sea surface temperatures than processes occurring near the Equator. Webb's analysis, which supports the scheme proposed by Wyrtki (1973, 1974), made use of archived data from a high-resolution ocean model. Previously the model had been checked in a preliminary comparison against SST observations in the equatorial Pacific, but, given the contentious nature of the new analysis, the model's behaviour in key areas needs to be checked further against observations. In this paper this is done for the 1987–1988 El Niño, making use of satellite observations of SST and sea level. SST is used to check the movement of warm water near the Equator and at the latitudes of the NECC. Sea level is used to check the model results at the Equator and at 6∘ N in the North Equatorial Trough. Sea level differences between these latitudes affect the transport of the NECC, the increased transport at the start of each strong El Niño being associated with a drop in sea level at 6∘ N in the western Pacific. Later rises in sea level at the Equator increase the transport of the NECC in mid-ocean. The variability of sea level at 6∘ N is also used to compare the strength of tropical instability waves in the model and in the observations. The model showed that in a normal year these act to dilute the temperature in the core of the NECC. However their strength declined during the development of the strong El Niños, allowing the NECC to carry warm water much further than normal across the Pacific. The results of this paper should not be taken as providing proof of the hypotheses of Wyrtki (1973, 1974) or Webb (2018) but instead as a failure of a targeted study, using satellite observations, to disprove the hypotheses

    EUMETSAT Invitation To Tender 14/209556: JASON-CS SAR Mode Sea State Bias Study. Final report

    Get PDF
    This document represents the final report of a study funded by EUMETSAT about SAR mode Sea State Bias (SSB) for the Sentinel-6/Jason-CS mission. The study comprises a critical review of SSB estimation methods in conventional (low-resolution mode or LRM) altimetry, theoretical considerations about the effect of swell on SAR altimeter waveforms and empirical investigations with Cryosat-2 SAR mode data to detect swell effects in L1B and Level 2 Sea Surface Height (SSH). The report concludes by summarising the basis for the selection and derivation of the SAR altimeter sea state bias correction algorithm and the methods available to calibrate and validate SAR mode SSB corrections. Theoretical considerations based on simple SAR waveform modelling indicate that multipeaked waveforms could occur in the presence of swell, but that effects become clearly detectable only when swell height exceeds 4 meters, which is relatively rare. In the case of the Cryosat-2 data examined in this study, only 2% of samples satisfied this condition. Experimental investigations of Cryosat-2 SAR mode data in different swell conditions produce no consolidated evidence of swell effects. Although anomalous 20Hz waveforms are occasionally observed, no statistically detectable effect of swell is obtained in the overall results for average L1B waveform shapes and L2 1Hz SSH biases and precisions. However, it is stressed that analyses in this study were limited geographically by the availability of Cryosat-2 SAR mode acquisitions over the ocean that could be collocated with Envisat ASAR swell data. It is strongly advised that analyses should be repeated with a broader geographical scope, including data from the central Pacific and the Southern Ocean where high sea state and swell conditions are more prevalent. It is suggested that this could be achieved using Sentinel-3 SRTM and Sentinel-1 L2 swell products, should such data be available. Empirical SSB estimation methods offer the only viable way forward at present to estimate SAR mode SSB. Parametric, non-parametric and hybrid methods are all relevant, noting that hybrid methods may provide more robust estimates in those high sea state and swell conditions that are less densely populated and where effects will be more significant. The development of SAR mode SSB corrections should include additional dependence on sea state development, which would be consistent with the tendency in LRM towards three-parameters SSB models (e.g. Tran et al., 2010b; Pires et al., 2016). The challenges of calibrating and validating SAR mode SSB corrections are the same - i.e. no better, no worse - than for conventional altimetry. For SAR mode altimetry however, P-LRM offer a unique way of calibrating and validating SAR mode SSB against conventional altimetry by providing coincident range measurements that have been shown to be unbiased against conventional LRM. In the case of Sentinel-6/Jason-CS, interleaved SAR mode will deliver true LRM data that make it possible to tie the Jason-CS SAR mode mission to the long-term altimetric data record without the issues linked to the loss of precision seen for SAR burstmode P-LRM

    The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030

    Get PDF
    Despite many of years of mapping effort, only a small fraction of the world ocean’s seafloor has been sampled for depth, greatly limiting our ability to explore and understand critical ocean and seafloor processes. Recognizing this poor state of our knowledge of ocean depths and the critical role such knowledge plays in understanding and maintaining our planet, GEBCO and the Nippon Foundation have joined forces to establish the Nippon Foundation GEBCO Seabed 2030 Project, an international effort with the objective of facilitating the complete mapping of the world ocean by 2030. The Seabed 2030 Project will establish globally distributed regional data assembly and coordination centers (RDACCs) that will identify existing data from their assigned regions that are not currently in publicly available databases and seek to make these data available. They will develop protocols for data collection (including resolution goals) and common software and other tools to assemble and attribute appropriate metadata as they assimilate regional grids using standardized techniques. A Global Data Assembly and Coordination Center (GDACC) will integrate the regional grids into a global grid and distribute to users world-wide. The GDACC will also act as the central focal point for the coordination of common data standards and processing tools as well as the outreach coordinator for Seabed 2030 efforts. The GDACC and RDACCs will collaborate with existing data centers and bathymetric compilation efforts. Finally, the Nippon Foundation GEBCO Seabed 2030 Project will encourage and help coordinate and track new survey efforts and facilitate the development of new and innovative technologies that can increase the efficiency of seafloor mapping and thus make the ambitious goals of Seabed 2030 more likely to be achieved

    Reduced ascending/descending pass bias in SMOS salinity data demonstrated by observing westward-propagating features in the South Indian Ocean

    Get PDF
    The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite has been providing data, including sea surface salinity (SSS) measurements, for more than five years. However, the operational ESA Level 2 SSS data are known to have significant spatially and temporally varying biases between measurements from ascending passes (SSSA) and measurements from descending passes (SSSD). This paper demonstrates how these biases are reduced through the use of SSS anomalies. Climatology products are constructed using SMOS Level 2 data to provide daily, one-degree by one-degree climatologies separately for ascending and descending passes using a moving window approach (in time and space). The daily, one-degree products can then be averaged to provide values of climatological SSS at different spatial and/or temporal resolutions. The averaged values of the SMOS climatology products are in good general agreement with data from the World Ocean Atlas 2013. However, there are significant differences at high latitudes, as well as in coastal and dynamic regions, as found by previous studies. Both the mean and standard deviation of the differences between data from ascending passes and data from descending passes for the anomalies are reduced compared with those obtained using the original salinity values. Geophysical signals are clearly visible in the anomaly products and an example is shown in the Southern Indian Ocean of westward-propagating signals that we conclude represent the surface expression of Rossby waves or large-scale non-linear eddies. The signals seen in salinity data agree (in speed) with those from sea surface temperature and sea surface height and are consistent with previous studies

    More than just DOIs, how to pragmatically make 50 years of diverse data centre holdings and services citable, the perspective and aspirations of the British Oceanographic Data Centre

    Get PDF
    The British Oceanographic Data Centre (BODC) celebrated its 50th anniversary in 2019. It holds data collected from 1773 to the present day. Holdings are multidisciplinary, heterogeneous data reflecting the full range of disciplines, platforms, temporal and spatial fieldwork scales typically encountered in oceanographic research and monitoring. These collections vary in granularity and contain data which are at different stages of curation ranging from raw data to standardised data products. BODC need to improve data services to meet the developing the expectations of the research community. These include the FAIR data principles, TRUSTed repository guidelines and CoreTrustSeal accreditation. This is a significant challenge within the constraints of resource available (both financial and human). The initial focus for BODC is making holdings citable with the following aspirations: Application of DOIs to data at the point of receipt by BODC. Publication of data papers and publication of DOIs for data products. Application of persistent identifiers to low level data granules where DOIs are not feasible. Application of persistent identifiers to datasets included in BODC API services and versioning of these data. Work with organisations or groups who include data curated by BODC in their products to enable the provenance of data to be unambiguous. Work with communities on joint data papers where BODC are a partner organisation. This will enable each type of data served by BODC to be unambiguously citable. The initial effort is being directed towards the application of DOIs to data submissions and publication of data papers for BODC curated data products

    Cross-calibrating ALES Envisat and CryoSat-2 Delay-Doppler: a coastal altimetry study in the Indonesian Seas

    Get PDF
    A regional cross-calibration between the first Delay-Doppler altimetry dataset from Cryosat-2 and a retracked Envisat dataset is here presented, in order to test the benefits of the Delay-Doppler processing and to expand the Envisat time series in the coastal ocean. The Indonesian Seas are chosen for the calibration, since the availability of altimetry data in this region is particularly beneficial due to the lack of in-situ measurements and its importance for global ocean circulation. The Envisat data in the region are retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker, which has been previously validated and applied successfully to coastal sea level research. The study demonstrates that CryoSat-2 is able to decrease the 1-Hz noise of sea level estimations by 0.3 cm within 50 km of the coast, when compared to the ALES-reprocessed Envisat dataset. It also shows that Envisat can be confidently used for detailed oceanographic research after the orbit change of October 2010. Cross-calibration at the crossover points indicates that in the region of study a sea state bias correction equal to 5% of the significant wave height is an acceptable approximation for Delay-Doppler altimetry. The analysis of the joint sea level time series reveals the geographic extent of the semiannual signal caused by Kelvin waves during the monsoon transitions, the larger amplitudes of the annual signal due to the Java Coastal Current and the impact of the strong La Niña event of 2010 on rising sea level trends

    A new daily quarter degree sea level anomaly product from CryoSat-2 for ocean science and applications

    Get PDF
    The European Space Agency launched CryoSat-2 as the first European ice mission in 2010. Its advanced altimeter met primary objectives concerned with sea ice thickness and ice sheets. The value of Cryosat-2 data over global oceans was recognised, and operational products were developed via the CryoSat Ocean Processor (COP). The novel orbit of CryoSat-2 results in a denser coverage of sample points compared to other satellite altimeters. The National Oceanography Centre Sea Level Anomaly (NOCSLA) gridded product is based on interpolating Geophysical Ocean Products (GOP) using weights in space and time. GOP represents the highest quality operational ocean data. NOCSLA is a daily, ¼° sea level anomaly product covering non-coastal oceans between [60°N 60°S] and January 2011 to October 2020. The paper presents the methodology and scientific applications of NOCSLA. Oceanographic features observed are compared against products from other missions, including Rossby waves and El Niño signals. Results show good agreement with other products, confirming the value of Cryosat-2 data for ocean science and applications
    • …
    corecore