271 research outputs found

    Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals

    Get PDF
    Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases

    Single-particle characterization of SARS-CoV-2 isoelectric point and comparison to variants of interest

    Get PDF
    SARS-CoV-2, the cause of COVID-19, is a new, highly pathogenic coronavirus, which is the third coronavirus to emerge in the past 2 decades and the first to become a global pandemic. The virus has demonstrated itself to be extremely transmissible and deadly. Recent data suggest that a targeted approach is key to mitigating infectivity. Due to the proliferation of cataloged protein and nucleic acid sequences in databases, the function of the nucleic acid, and genetic encoded proteins, we make predictions by simply aligning sequences and exploring their homology. Thus, similar amino acid sequences in a protein usually confer similar biochemical function, even from distal or unrelated organisms. To understand viral transmission and adhesion, it is key to elucidate the structural, surface, and functional properties of each viral protein. This is typically first modeled in highly pathogenic species by exploring folding, hydrophobicity, and isoelectric point (IEP). Recent evidence from viral RNA sequence modeling and protein crystals have been inadequate, which prevent full understanding of the IEP and other viral properties of SARS-CoV-2. We have thus experimentally determined the IEP of SARS-CoV-2. Our findings suggest that for enveloped viruses, such as SARS-CoV-2, estimates of IEP by the amino acid sequence alone may be unreliable. We compared the experimental IEP of SARS-CoV-2 to variants of interest (VOIs) using their amino acid sequence, thus providing a qualitative comparison of the IEP of VOIs

    Thermostabilization of Viruses via Complex Coacervation

    Get PDF
    Widespread vaccine coverage for viral diseases could save the lives of millions of people each year. For viral vaccines to be effective, they must be transported and stored in a narrow temperature range of 2-8°C. If temperatures are not maintained, the vaccine may lose its potency and would no longer be effective in fighting disease; this is called the cold storage problem. Finding a way to thermally stabilize a virus and end the need to transport and store vaccines at refrigeration temperatures will increase access to life-saving vaccines. We explore the use of polymer-rich complex coacervates to stabilize viruses. We have developed a method of encapsulating virus particles in liquid complex coacervates that relies on the electrostatic interaction of viruses with polypeptides. In particular, we tested the incorporation of two model viruses; a non-enveloped porcine parvovirus (PPV) and an enveloped bovine viral diarrhea virus (BVDV) into coacervates formed from poly(lysine) and poly(glutamate). We identified optimal conditions (i.e., the relative amount of the two polypeptides) for virus encapsulation, and trends in this composition matched differences in the isoelectric point of the two viruses. Furthermore, we were able to achieve a ~103 – 104-fold concentration of virus into the coacervate phase, such that the level of virus remaining in the bulk solution approached our limit of detection. Lastly, we demonstrated a significant enhancement of the stability of non-enveloped PPV during an accelerated aging study at 60°C over the course of a week. Our results suggest the potential for using coacervation to aid in the purification and formulation of both enveloped and non-enveloped viruses, and that coacervate-based formulations could help limit the need for cold storage throughout the transportation and storage of vaccines based on non-enveloped viruses

    Requirement of a Membrane Potential for the Posttranslational Transfer of Proteins into Mitochondsria

    Get PDF
    Posttranslational transfer of most precursor proteins into mitochondria is dependent on energization of the mitochondria. Experiments were carried out to determine whether the membrane potential or the intramitochondrial ATP is the immediate energy source. Transfer in vitro of precursors to the ADP/ATP carrier and to ATPase subunit 9 into isolated Neurospora mitochondria was investigated. Under conditions where the level of intramitochondrial ATP was high and the membrane potential was dissipated, import and processing of these precursor proteins did not take place. On the other hand, precursors were taken up and processed when the intramitochondrial ATP level was low, but the membrane potential was not dissipated. We conclude that a membrane potential is involved in the import of those mitochondrial precursor proteins which require energy for intracellular translocatio

    The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor

    Get PDF
    DURING photosynthetic CO2 fixation, fixed carbon is exported from the chloroplasts in the form of triose phosphate by the chloroplast phosphate translocator, which is the principal polypeptide (E29) from spinach chloroplast envelopes1. We have sequenced this nuclear-coded envelope membrane protein from both spinach and pea chloroplasts2,3. An envelope membrane protein, E30, has been identified as a possible receptor for protein import into pea chloroplasts using an anti-idiotypic antibody approach4–6; antibodies raised against purified E30 inhibited binding and import of proteins into chloroplasts7. The amino-acid sequence of E30 deduced from its complementary DNA7 turned out to be highly homologous to that of E29, assigned by us as the spinach phosphate translocator2, and was identical to the corresponding polypeptide from pea chloroplasts3. Differences in the binding properties to hydroxylapatite of £30 and the phosphate translocator suggested that E30 was not responsible for the chloroplast phosphate-transport activity but was the chloroplast import receptor7. Here we present evidence that argues against this and which identifies E30 as the chloroplast phosphate translocator

    Factors associated with depressive mood at the onset of multiple sclerosis - an analysis of 781 patients of the German NationMS cohort

    Get PDF
    BACKGROUND: Depression has a major impact on the disease burden of multiple sclerosis (MS). Analyses of overlapping MS and depression risk factors [smoking, vitamin D (25-OH-VD) and Epstein-Barr virus (EBV) infection] and sex, age, disease characteristics and neuroimaging features associated with depressive symptoms in early MS are scarce. OBJECTIVES: To assess an association of MS risk factors with depressive symptoms within the German NationMS cohort. DESIGN: Cross-sectional analysis within a multicenter observational study. METHODS: Baseline data of n = 781 adults with newly diagnosed clinically isolated syndrome or relapsing-remitting MS qualified for analysis. Global and region-specific magnetic resonance imaging (MRI)-volumetry parameters were available for n = 327 patients. Association of demographic factors, MS characteristics and risk factors [sex, age, smoking, disease course, presence of current relapse, expanded disability status scale (EDSS) score, fatigue (fatigue scale motor cognition), 25-OH-VD serum concentration, EBV nuclear antigen-1 IgG (EBNA1-IgG) serum levels] and depressive symptoms (Beck Depression Inventory-II, BDI-II) was tested as a primary outcome by multivariable linear regression. Non-parametric correlation and group comparison were performed for associations of MRI parameters and depressive symptoms. RESULTS: Mean age was 34.3 years (95% confidence interval: 33.6-35.0). The female-to-male ratio was 2.3:1. At least minimal depressive symptoms (BDI-II > 8) were present in n = 256 (32.8%), 25-OH-VD deficiency (<20 ng/ml) in n = 398 (51.0%), n = 246 (31.5%) participants were smokers. Presence of current relapse [coefficient (c) = 1.48, p = 0.016], more severe fatigue (c = 0.26, p < 0.0001), lower 25-OH-VD (c = -0.03, p = 0.034) and smoking (c = 0.35, p = 0.008) were associated with higher BDI-II scores. Sex, age, disease course, EDSS, month of visit, EBNA1-IgG levels and brain volumes at baseline were not. CONCLUSION: Depressive symptoms need to be assessed in early MS. Patients during relapse seem especially vulnerable to depressive symptoms. Contributing factors such as fatigue, vitamin D deficiency and smoking, could specifically be targeted in future interventions and should be investigated in prospective studies
    corecore