1,600 research outputs found
Moment-Fourier approach to ion parallel fluid closures and transport for a toroidally confined plasma
A general method of solving the drift kinetic equation is developed for an
axisymmetric magnetic field. Expanding a distribution function in general
moments a set of ordinary differential equations are obtained. Successively
expanding the moments and magnetic-field involved quantities in Fourier series,
a set of linear algebraic equations is obtained. The set of full (Maxwellian
and non-Maxwellian) moment equations is solved to express the density,
temperature, and flow velocity perturbations in terms of radial gradients of
equilibrium pressure and temperature. Closure relations that connect parallel
heat flux density and viscosity to the radial gradients and parallel gradients
of temperature and flow velocity, are also obtained by solving the
non-Maxwellian moment equations. The closure relations combined with the
linearized fluid equations reproduce the same solution obtained directly from
the full moment equations. The method can be generalized to derive closures and
transport for an electron-ion plasma and a multi-ion plasma in a general
magnetic field.Comment: 25 pages, 9 figure
Electron Parallel Transport for Arbitrary Collisionality
Integral (nonlocal) closures [J.-Y. Ji and E. D. Held, Phys. Plasmas 21, 122116 (2014)] are combined with the momentum balance equation to derive electron parallel transport relations. For a single harmonic fluctuation, the relations take the same form as the classical Spitzer theory (with possible additional terms): the electric current and heat flux densities are connected to the modified electric field and temperature gradient by transport coefficients. In contrast to the classical theory, the dimensionless coefficients depend on the collisionality quantified by a Knudsen number, the ratio of the collision length to the angular wavelength. The key difference comes from the proper treatment of the viscosity and friction terms in the momentum balance equation, accurately reflecting the free streaming and collision terms in the kinetic equation. For an arbitrary fluctuation, the transport relations may be expressed by a Fourier series or transform. For low collisionality, the electric resistivity can be significantly larger than that of classical theory and may predict the correct timescale for fast magnetic reconnection
Electron Parallel Closures for Various Ion Charge Numbers
Electron parallel closures for the ion charge number Z = 1 [J.-Y. Ji and E. D. Held, Phys. Plasmas 21, 122116 (2014)] are extended for 1 ≤ Z ≤ 10. Parameters are computed for various Z with the same form of the Z = 1 kernels adopted. The parameters are smoothly varying in Z and hence can be used to interpolate parameters and closures for noninteger, effective ion charge numbers
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph <i>Trichodesmium</i>
Trichodesmiumisagloballyimportantmarinemicrobethatprovidesfixednitrogen(N)tootherwiseN-limited ecosystems.Innature,nitrogenfixationislikelyregulatedby iron or phosphate availability, but the extent and interaction of these controls are unclear. From metaproteomics analyses using established protein biomarkers for nutrient stress, we found that iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in the North AtlanticOcean.Counterintuitively,thenitrogenaseenzymewas more abundant under co-stress as opposed to single nutrient stress. This is consistent with the idea that Trichodesmium has a specific physiological state during nutrient co-stress. Organic nitrogen uptake was observed and occurred simultaneously with nitrogen fixation. The quantification of the phosphate ABC transporter PstA combined with a cellular model of nutrient uptake suggested that Trichodesmium is generally confronted by the biophysical limits of membrane space and diffusion rates for iron and phosphate acquisition in the field. Colony formation may benefit nutrient acquisition from particulate and organic sources, alleviating these pressures. The results highlight that to predict the behavior of Trichodesmium, both Fe and P stress must be evaluated simultaneously
Recommended from our members
Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall
Sahelian summer rainfall, controlled by the West African
monsoon, exhibited large-amplitude multidecadal variability
during the twentieth century. Particularly important was the
severe drought of the 1970s and 1980s, which had widespread
impacts1–6. Research into the causes of this drought has
identified anthropogenic aerosol forcing3,4,7 and changes in
sea surface temperatures (SSTs; refs 1,2,6,8–11) as the most
important drivers. Since the 1980s, there has been some
recovery of Sahel rainfall amounts2–6,11–14, although not to
the pre-drought levels of the 1940s and 1950s. Here we
report on experiments with the atmospheric component of a
state-of-the-art global climate model to identify the causes
of this recovery. Our results suggest that the direct influence
of higher levels of greenhouse gases in the atmosphere
was the main cause, with an additional role for changes
in anthropogenic aerosol precursor emissions. We find that
recent changes in SSTs, although substantial, did not have a
significant impact on the recovery. The simulated response
to anthropogenic greenhouse-gas and aerosol forcing is
consistent with a multivariate fingerprint of the observed
recovery, raising confidence in our findings. Although robust
predictions are not yet possible, our results suggest that the
recent recovery in Sahel rainfall amounts is most likely to be
sustained or amplified in the near term
What we talk about when we talk about "global mindset": managerial cognition in multinational corporations
Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research
Recommended from our members
The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are
reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution.
It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at
the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in
the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution
seen across climate models
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
- …