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Abstract
Electron parallel closures for the ion charge number Z = 1 [J.-Y. Ji and E. D. Held, Phys. Plasmas
21, 122116 (2014)] are extended for 1 < Z < 10. Parameters are computed for various Z with the same
form of the Z = 1 kernels adopted. The parameters are smoothly varying in Z and hence can be used to

interpolate parameters and closures for noninteger, effective ion charge numbers.
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I. INTRODUCTION

A set of fluid equations for density (n), temperature (7°), and flow velocity (V) require closure
relations for heat flux density (h), friction force density (R), and viscous pressure tensor (7). For
electron-ion plasmas in a magnetic field, a complete set of closures has been obtained for high col-
lisionality H,D ]. In a magnetized plasma, parallel closures for moderate- and low-collisionality
plasma are studied with approximate collision operators in Refs. ]. Accurate collision opera-
tors [Q, ] are adopted in the general moment approach [8, ]. In general, the parallel closures are
expressed by kernel-weighted integrals. The kernels obtained from the moment method appear in
a series of exponential functions and are valid up to moderately low collisionality depending on
the number of moments. Closures in the collisionless limit have been studied in Refs. E, ].

From the moment kernels and collisionless kernels, simple fitted kernels for arbitrary collision-
ality are obtained for Z = 1 in Ref. [B]. For completeness and application to various ion charge
numbers [ﬂ—@], we extend the Z7 = 1 work to 1 < Z < 10. The fitted kernels are specified by
seven parameters and the parameters have many local minima in the least square fitting. Among
them we choose minima where parameters change smoothly in Z. The smoothness enables us to
compute kernel parameters and closures for a noninteger effective ion charge number Zg.

In Sec. [l we review the parallel moment equations and the properties of kernels for the integral
closures. In Sec. [l the fitted kernel parameters and accuracy of closures are presented for 1 <

Z < 10. In Sec. IVl we summarize.

II. PARALLEL MOMENT EQUATIONS AND INTEGRAL CLOSURES

To obtain closures for the Maxwellian (M) moment equations, we decompose a distribution
function into the Maxwellian (f™) and non-Maxwellian parts (f~), and then solve a reduced

(approximate) kinetic equation for fN. For parallel closures, we solve a drift kinetic equation to

find a gyro-averaged distribution function ( f),

of  ——+  OfM
U”W = Cor,(fN) _UHW

‘I'CeL(f(%vI) (1)

for fN in terms of fM, where Cyy, is the linearized Landau-Fokker-Planck operator with respect to

f M " for an electron distribution function F,

Ca(F) = C(F, [ + C(f4 F) + C(F, /). )
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When solving Eq. () for closures, we must remove the fluid moment equations to be closed [B].

In the total-velocity moment expansion, the distribution functions are

Va m —m
Ja' S8 (280 ) = f 4 S 3)
Ta
=y PEME )
lk£M
with
m Am Am 1 —52
f =nafe, fo = me “ (5)
and
A 1
Pl = —==Pif, P = P(s) L7 (s7). (©)

\ O'l)\fl€
Here s, = V/vra, Vra = \/2T,/ma, V is the flow velocity, o; = I!/(20 + D!, AL = (1 + k +
1/2)!/k!(1/2)!, P! is a harmonic tensor, and L,(fﬂ/ %) is a Laguerre-Sonine polynomial. Now the

collision operators can be further linearized with respect to f2* and f™,

and
COL(feM> = C( eM7fiM) ~ C( Om’ fim> +C(feM_m7 flm)_'_C( én7fiM_m)' (8)

The gyro-averaged distribution function, f = (2m)~! | d~ f where v is the gyro-angle, can be

written as
fl = £ (14 284 2’) = fr £ ©)
=1y Bialf, (10)
lk#£M
with
PlF = P, P = LR L (), (n

VAV

= [ 2, MY, (12)
o]

where 6; = 1/(21 + 1), £ = v /v, and P, is a Legendre polynomial. It has been shown [H] that
the gyroaverage of the linearized operators of distribution functions, Egs. (7)) and (8), are the same

as the linearized operators of the gyroaveraged distribution functions, i.e.,

CeL(felV)zC(?af;l)+C( em’ﬁ\l)_‘_C(AeN’fim) (13)



and

Co (f) = C(f2 M) + CUT™ ™) + CURE ). (14)

To obtain the (j, p) moment equation, we multiply Pi? o Eq. (I) and integrate over velocity

space
Ik
vr Y @p,zk_@gg _ L > a4 Lo (15)
1k#M Tee i Tee
where
WM:/mﬁwﬁWy (16)
dﬁm::nﬁ/va”Ch(meM): e (17)
and
Jp Djp M afjev[
gr = dvP [TeoCoL(fO )— )\CSHW], (18)

where A\c = vpTee and 7. is the electron-electron collision time. The electron collision matrix can

be computed from

= — S (ADF - BI* 4 AT) (19
nem
where
08" = [ dvERCUERE £, 20
@@yszwafﬁ%% 1)

and formulae for Agk and ngj’f are presented in Refs. , ]. For electrons, the nonvanishing

thermodynamic drives g4 are

gt = 51k?%% + ﬁZaéfonveiH, (22)
g% = —\/;nnewn, (23)

where

1/2)!
ai’ = i = _\/ (2/:) (f;)k!/u)/z)!’ @4
m;gﬂ%jg (25)
and

W) =bb: W, (W),s =0,V + 03V — gaaﬁv V. (26)
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The parallel closures are related to the general moments by

V5

hy = —T’UTTTLH, (27)

R” _ m:-'UTe[ ne e1|| 4+ Z 10k lk (28)
2 20

™ = —Tn"". (29)

V3

When solving Eq. (13), we truncate the system with j,/ = 0,1,--- L — 1 and
2,3, K+1, [=0
pk=412-- K, =1
0,1,---, K—-1, l=2,---,L—1

to have a system of N = LK moment equations. Enumerating the moment indices (I, k) as a

singleindex A =IK +k+:=1,2,---, N, where

we rewrite Eq. (I3) as
on al
E Wap— > =D Capns + ga. (30)
B=1

Here the arclength ¢ along a magnetlc field line is normalized by the collision length, dn = d¢/A¢.
The linear system (30) with constant matrices ¥ and C' can be solved by computing the eigensys-

tem of U~'C (see Refs. [@] and [B] for details):

Z(‘I’_IC)ABWBC = kpWac, (31)
C

where the eigenvalues &, appear in positive and negative pairs. The particular solution driven by

thermodynamic drives is
= [ Kanle = ()i (32)
D —0o0

where the kernel functions are defined by

Z vaean’ 77<O>
Kap(n) =<4 1oke=0 (33)
+ > e n>o0,
[ {Blkp<0}
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with coefficients

Vip =Y WasWgb¥op,. (34)
c
For closure moments, we define
5
751 = 7151 11>

B _ 1k0 B
Thr — \/72 Aei Y11 1k—7}zh7

B B
The = \/;%120 Vrhs

M

B 10p 1k0 B

YRR = a'01 ei fylp 1k>
p,k

B __ 1k0 B B

YRe = \/7 Aei V20,1 = TnR>

B _

Vrm = 3720 20 (35)

and corresponding K 4p by Eq. (33). Noting that

B _
—Yap, AD =hh,hR, RR,mm = even,
Yap = (36)
+7v8,, AD = hr, Rt = odd,
where — B denotes the moment index corresponding to —kg, we notice that the kernel functions
are even or odd functions:
+Kap(n), AD = even

Kap(—n) = (37)
—Kap(n), AD = odd.

Using the definition of K 4p and Eqgs. (22)-(29)), we can write the parallel closures as

1 ndl Vi 3
h”(ﬁ) = TUT/dT] <—§Khth , KhRZ TII KthnToeW”)a (38)
_ mn, o omur [0 o ndl Vel o 3
Ri() = ="V + 2 [ af (~Km g G+ KenZnn = K1), 39
ndl Vi 3
m(l) = T / dn’<—K g+ 2 UT” —sznTCCW]O. (40)

The closure calculation from a truncated moment system involves truncation errors which de-

pend on the collisionality. The inverse collisionality is often measured by the Knudsen number



k = Ac/|V~!|. Since the sinusoidal drives have a constant k, we use them to investigate the trun-
cation errors and convergent behavior of the closures while increasing the number of moments V.
Furthermore, in many practical applications, general drives can be expressed by Fourier series in
a periodic system or its continuum version, Fourier transform, in a non-periodic system.

For sinusoidal drives, T' = Ty + Ty sing, V| = Vi + Vising, and Vi = Vi cos p, where
¢ =21/ X+ o = kn + pp and k = 27 \c/\, assuming that n and vy & \/2T,/m are constant

and V - V| = 0, the linearized closures become

1 ~ ~ ~
hy(€) = —§nTlvThh cos ¢ + nTyVeihg cos o — nTyVih, sin @, 41
21 - Vei 7 2mur A
Ry(¢) = —nTlTWRh cos p — mn Rp cosp — nmV; T R, sin o, (42)
L Vei . . Vi
m(€) = —nTi7sin @ + 2nTOU—7TR sin ¢ — nTOU—W7r COS . (43)
T T

The dimensionless closures are defined by ﬁh = k:f(hh, fLR = ZKug = f%h, ﬁw = kK, = Th,
Rr=1—ZKpp, Ry = ZKp, = #r, and 7, = kK., where

WADkB
) Z EwER AD = even
Kap = (44)

7AD _
Z EaE AD = odd,

which are derived from Eq. (33), Eq. (36), and

) ) ;o K up cos p, AD =even,
Kap(n—mn') cos(kn’ + po)dn’ = ¢ (45)
K psiny, AD = odd.

III. FITTED KERNEL FUNCTIONS FOR INTEGRAL CLOSURES

The kernel functions obtained from N moment equations, Eq. (33), (i) consist of NV/2 terms of
exponential functions, and (ii) are inaccurate for < 7, where 7). decreases as N increases (e.g.
Ne ~ 0.01 for N = 6400). The inaccuracy for small 7 introduces an error in the closure calculation
for large wave number k£ 2> k.. For example, in the case of the parallel heat flow with Z = 1 (see
Fig. 2 of Ref. ]), the N = 100 result deviates less than 1% from the N = 400 result for
k < 5. This means that the N = 400 result is accurate within much less than 1% error for & < 5.
Similarly, the N = 400 result agrees with the N = 1600 result for £ < 20 and the N = 1600

result agrees with the N = 6400 result for £ < 80. As a conservative estimate, k. ~ 80 and the
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N = 6400 heat flow closure is practically exact for & < k.. This convergence scheme can be used
to estimate how many parallel moments are needed for a given £ value. To be accurate within 1%
error, N = 100 is required for £ ~ 5, N = 400 for k£ ~ 20, N = 1600 for k£ ~ 80, and so on. Note
that the N = 6400 kernels consist of 3200 terms and are accurate only for k£ < 80. Therefore, it
is desirable to obtain simple fitted functions that accurately represent the moment-solution kernels
for n 2 ., and the collisionless kernels for < 7.. We obtained the fitted kernels for Z = 1 in
Ref. [13] and extend to Z = 2,3, - - - , 10 in this work.
In the collisional limit, the parallel closures for arbitrary 2 are [@]

o N Tee 5
by = —&)— =T + fnT Ve, (46)
A ~ mn
Ry = —BinoyT — &y—— Ve, (47)
7TH = —ﬁonTTeeVV”. (48)

In the collisionless limit, the closures are determined from the asymptotic behavior of the kernels

forn <1
18
Khh(n) ~ _577'3/2 (1n|77| +7h)7 (49)
1
Kia(n) ~ ¢, (50)
4
Kmr(n) ~ —57T1/2(1n|77|+%)> (51

where 7, and -y, are constants ]. For the friction related kernels Ky, Krg, and Kg,, extrap-
olating the 6400 moment solution with the constraint Eq. (@6) will be accurate enough since the
corresponding closures vanish as 7 — oo (k — 00, in the collisionless limit).

All kernel functions are fitted to a single function with the same form of Z = 1 kernels adopted,

Kap(n) = —[d + aexp(—bn°)] In[l — aexp(—pn7)]. (52)

The parameters a, b, ¢, d, «, (3, and ~y are listed in Table[ll

In computing the fitted kernel parameters there are many least-squares local minima which
accurately represent the convergent kernels (n = 0.01). We use sinusoidal drives to assess the
accuracy of fitted kernels. The closures computed from fitted kernels are compared with 6400
moment closures in the convergent regime (k < 80). Note that the fitted parameters automatically
satisfy kernels for n < 0.01 forced by Eqgs. @9)-(31) and therefore closures for K, Kj,, and
K. are accurate in the collisionless limit. For friction related kernels K g, Kg,, and Kgg, the

closures are ignorable in the collisionless (no friction) limit.
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>
sl
N

1 2 3 4 5 6 7 8 9

10

Kpp

-3.85 -3.61 -4.02 -450 -552 -698 -9.59 -14.8 -242
0.248 0.387 0.590 0.746 0.796 0.776 0.686 0.528 0.377
0.680 0.551 0.537 0.569 0.581 0.583 0.583 0.583 0.583
540 547 607 6.66 7.74 928 119 17.1 265
1 1 1 1 1 1 1 1 1
202 249 291 320 346 370 393 4.18 443
0.417 0.348 0.316 0.300 0.291 0.281 0.279 0.277 0.276

-39.0
0.267
0.583
41.4
1
4.65
0.275

Kpr

6.37 676 5.63 534 561 631 822 113 173
5.12 572 6.09 653 685 7.06 7.31 7.51 7.61
0.160 0.179 0.219 0.240 0.239 0.227 0.205 0.181 0.154
0.100 0.187 0.339 0.440 0.465 0.457 0.411 0.374 0.325
1 1 1 1 1 1 1 1 1
1.00 173 250 296 3.19 333 337 339 337
0.583 0.465 0.387 0.346 0.332 0.326 0.327 0.327 0.328

27.9
7.71
0.126
0.278
1
3.34
0.329

KhT(

-0.229 -0.179 -0.144 -0.133 -0.130 -0.137 -0.150 -0.169 -0.212 -0.239

226 3.08 372 435 472 494 505 512 5.15
0.594 0.596 0.594 0.588 0.569 0.562 0.556 0.551 0.548
0.363 0.280 0.240 0.225 0.210 0.220 0.241 0.269 0.308
0.775 0.862 0.875 0.886 0.918 0.910 0.889 0.865 0.875
149 1.69 181 197 212 232 253 276 3.03
0.478 0.460 0.454 0.442 0.432 0.415 0.399 0.380 0.362

5.38
0.543
0.334
0.878

3.23
0.351

Kgrr

305 322 342 363 386 406 431 450 470
830 8.67 890 9.09 923 932 940 949 952
0.139 0.140 0.141 0.142 0.143 0.143 0.144 0.144 0.144
0.362 0.459 0.576 0.686 0.830 0.972 1.14 130 147
1 1 1 1 1 1 1 1 1
324 411 475 523 568 6.06 639 671 6097
0.349 0.314 0.290 0.272 0.258 0.248 0.237 0.232 0.225

489
9.54
0.144
1.67
1
7.24
0.219

KRT('

0.102 0.125 0.147 0.169 0.186 0.209 0.224 0.239 0.253
0.528 0.724 0.898 1.06 122 130 151 1.61 1.77
0.961 0.948 0.922 0.901 0.887 0.864 0.848 0.832 0.823
0.198 0.212 0.225 0.230 0.231 0.225 0.220 0.213 0.207
1 1 1 1 1 1 1 1 1
245 3.06 352 387 415 438 457 473 488
0.408 0.370 0.347 0.332 0.322 0.313 0.307 0.303 0.299

0.263
1.91
0.818
0.202
1
5.02
0.294

2 WO A0 QR WL A0 LR WO A0 LR WO A0 o WL QA0 o2 WL a0 o9

0.470 0.598 0.700 0.762 0.804 0.839 0.857 0.873 0.878
1.06 1.19 131 145 159 172 185 197 2.08
0.661 0.607 0.580 0.566 0.557 0.551 0.546 0.543 0.541
0.357 0.275 0.207 0.166 0.139 0.118 0.106 0.096 0.091
1 1 1 1 1 1 1 1 1
1.66 197 217 234 249 261 274 285 297
0.546 0.517 0.498 0.487 0.479 0.472 0.469 0.466 0.465

0.883
2.18
0.539
0.087
1
3.08
0.465

Table I: Fitted parameters in Eq. (32) for Z = 1,2,--- , 10.
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In the interest of including noninteger effective ion charge numbers, we choose sets of least-
squres fitting parameters that change smoothly in Z. Although some parameters for Z = 1 in this
work are different from the ones in Ref. ], they provide similar accuracy for closure calcula-
tions. For a noninteger ion-charge number Z.¢, Z < Z.g < Z + 1, a simple linear interpolation

of parameters A = a,b,c,d, 3,7
Aget = (1 +Z — Zegt) Az + (Zeg — Z) Az 1 (53)

results in accurate results. We note that using the constraints (49)-(31) instead of interpolating all

parameters results in higher accuracy. We obtain a from other interpolated parameters for K}, and

KT("TI'

18

a = m — d for Khh, (54-)
4
a = m — d for Kﬂw, (55)

and « for K},

5(a+d)

The maximum deviations from the closures in the convergent regime (k < 80) are shown for

a=1—exp for K. (56)

integers and half-integers in Table[[ll The maximum deviations usually occur at & where the closure
values are close to zero. For a noninteger 7 < Z.g < Z + 1, the error is less than the maximum
of errors at Z, Z + 1/2, and Z + 1. The maximum errors are less than 5% at the worst case for
any arbitrary 1 < Z < 10.

Fig. [Il shows typical behavior of closures due to sinusoidal drives for various Z. In the colli-
sional (k < 1) limit, the closures approach the corresponding high-collisionality values for each
Z [19]. In the collisionless (k — oo) limit, the closures approach Z-independent collisionless-
limit values [B]. Although the maximum errors are verified to be less than 5% for £ < 80, the
errors may be larger than 5% for & 2 80. Since the exact values are unknown in this regime (the
6400 moment closures do not converge) we can only estimate the accuracy of closures from the
shape of curves. In this regime, the change of closure values hy, for Z = 10 and h; (7y,) for
Z = 5,10 seems slightly eccentric. Nevertheless, the errors are expected to be not much greater
than 5%, since the closure values eventually approach the theoretical values in the collisionless

limit.
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Figure 1: (Color online) Closures for sinusoidal drives computed from fitted kernels for Z = 1,2, 5, and

10.
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Z K, Kpr K Kgrr Kprr Krr

1 1.0 0.6 0.6 0.7 1.0 0.5
1.5 24 3.2 2.7 4.0 32 1.6
2 2.8 0.9 1.0 0.7 0.9 0.8
2.5 3.0 4.4 1.8 24 1.5 1.1
3 4.9 1.9 0.7 0.7 0.6 0.6
3.5 4.3 23 1.1 L5 0.9 1.0
4 4.8 4.3 0.8 0.3 0.3 0.4
4.5 4.4 4.1 1.2 0.8 0.9 0.5
5 4.7 4.4 0.8 0.2 0.5 0.4
5.5 4.2 3.7 0.8 0.3 0.8 0.4
6 4.6 39 0.8 0.5 0.5 0.4
6.5 3.1 1.0 0.8 0.3 0.6 0.2
7 3.1 0.8 1.0 0.4 0.7 0.5
7.5 2.8 1.5 1.4 0.2 0.5 0.4
8 3.0 0.9 2.0 0.2 0.7 0.4
8.5 3.7 4.0 23 0.3 0.9 0.4
9 34 1.8 25 0.2 0.9 0.5
9.5 3.4 3.1 2.6 0.3 0.7 0.3
10 34 3.2 2.7 0.8 0.9 0.3

Table II: Maximum percentage deviation of closures computed with fitted kernels from 6400 moment clo-
sures in the convergent regime 1 < 80 for 1 < Z < 10. For half integers, kernel parameters are computed

by linear interpolation.
IV. SUMMARY

In obtaining simple fitted kernels for electron parallel closures, we extended the Z = 1 calcu-
lation to Z = 2, - - - 10. Since parameters change smoothly in Z, linear interpolation of parameters
at Z and Z + 1 yields the parameter for noninteger Z < Z.g < Z + 1 with the same order of
accuracy in computing closures.

The same method can be applied to ion parallel closures. As shown in Refs. [B, @], inclusion
of the ion-electron collision operator is necessary. The ion-electron operator introduces two in-
dependent parameters, the mass ratio combined with the ion charge number and the temperature

ratio. Fitted kernels for ion parallel closures will appear in future work.
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