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Abstract

Integral (nonlocal) closures [J.-Y. Ji and E. D. Held, Phys. Plasmas 21, 122116 (2014)] are combined

with the momentum balance equation to derive electron parallel transport relations. For a single harmonic

fluctuation, the relations take the same form as the classical Spitzer theory (with possible additional terms):

the electric current and heat flux densities are connected to the modified electric field and temperature gradi-

ent by transport coefficients. In contrast to the classical theory, the dimensionless coefficients depend on the

collisionality quantified by a Knudsen number, the ratio of the collision length to the angular wavelength.

The key difference comes from the proper treatment of the viscosity and friction terms in the momentum

balance equation, accurately reflecting the free streaming and collision terms in the kinetic equation. For

an arbitrary fluctuation, the transport relations may be expressed by a Fourier series or transform. For low

collisionality, the electric resistivity can be significantly larger than that of classical theory and may predict

the correct timescale for fast magnetic reconnection.
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I. INTRODUCTION

In the electron transport theory, the current and heat flux densities are related to the (modi-

fied) electric field and temperature gradient. The transport depends on collisionality. The inverse

collisionality is often quantified by the Knudsen number k = λC/L, where λC is the collision

length and L is the gradient scale length. For a sinusoidal drive of wavelength λ, L = λ/2π and

k = 2πλC/λ. For high-collisionality (k ≪ 1) plasmas, the electron parallel transport is described

by the Spitzer theory [1, 2], where the flux densities are connected to thermodynamic drives by

transport coefficients. For intermediate to low collisionality, integral (nonlocal) transport effects

are considered in Refs. [3–5], where Lorentz model operators are used in the kinetic equation.

Lorentz type operators with a momentum restoring term are used to obtain closures and transport

also in Refs. [6, 7]. The transport relations can be used to close the electron fluid system of den-

sity (n), and temperature (T ) when the ion flow velocity is provided by the ion fluid equations.

Throughout the paper, the electron species index e is suppressed unless it is needed for clarity.

A Lorentz-type operator is a good approximation for electron-ion collisions and can be used for

large ion charge number Z. For small Z, however, the electron-electron collision operator should

be included for accurate evaluation of collision effects. With the electron-electron collision oper-

ator included, the electron parallel (‖) closures have been obtained in integral form for arbitrary

collisionality in Refs. [8, 9]. In principle, the parallel viscosity (π‖) and the parallel friction force

density (R‖) can be incorporated in the electron momentum balance equation

neE‖ + ∂‖p+ ∂‖π‖ = R‖, (1)

to find the electron flow velocity (V‖ = u) and subsequently to compute the parallel heat flux

density (h‖) from the h‖ closure relation. In general, this process involves solving an integral

equation.

In many interesting problems [3–5, 10] the small fluctuations and hence the thermodynamic

drives are sinusoidal. For a single harmonic drive, the linearized momentum balance equation (1)

becomes algebraic in wave number space. Since the integral closures are expressed by a convo-

lution of a kernel function and a thermodynamic drive in the linearization, the integral closures

are algebraic, point-wise multiplication of the kernel and drive, in wave number space. Therefore

the linear system can be solved analytically for a given wave number. In this work the transport

relations for arbitrary collisionality are derived in wave number space. The transport relations

have the same form as the classical transport theory [1, 2, 11, 12] but with dimensionless constant

2



coefficients replaced by k-dependent functions. For a general drive, transport can be described by

Fourier series or transform.

In Sec. II, we present the integral closures in configuration space and wave number space where

we provide the fitted functions of Fourier transformed kernels. In Sec. III, using the momentum

balance equation and closure relations, we obtain transport relations with k-dependent transport

coefficients. Sec. IV is devoted to a conclusion.

II. ELECTRON PARALLEL CLOSURES IN WAVE NUMBER SPACE

When closing the {n, T,V} fluid moment equations for arbitrary collisionality, the electron

parallel closures {h‖, R‖, π‖} appear in integral form [8]. For small fluctuations n = n0 + n1,

T = T0 + T1, and V = V1, the linearized closures are written as

h(ℓ) = −1

2
n0v0

∫

dη′Khh
dT1

dη′
+ p0Z

∫

dη′KhRuei − p0

∫

dη′Khπ
∂u

∂η′
, (2)

R(ℓ) = −1

2

mv0
τei

n0

T0

∫

dη′KRh
∂T1

∂η′
− mn0

τei

(

uei − Z

∫

dη′KRRuei

)

− mn0

τei

∫

dη′KRπ
∂u

∂η′
,(3)

π(ℓ) = −n0

∫

dη′Kπh
dT1

dη′
+ 2

n0T0

v0
Z

∫

dη′KπRuei −
n0T0

v0

∫

dη′Kππ
∂u

∂η′
. (4)

Here ℓ is the arc-length along a magnetic field line (or a parallel direction ‖), η = ℓ/λC (η′ =

ℓ′/λC), λC = v0τee the collision length, v0 =
√

2T0/m the thermal speed, τee is the electron-

electron collision time, τei = τee/Z is the electron-ion collision time, uei = Ve1‖ − Vi1‖ is the

relative electron-ion parallel velocity, and u = Ve1‖. Although fitted kernels for Z = 1 only will

be provided in this work, the ion charge number Z is kept for future purpose. For simplicity, we

have assumed ∇ ·V1⊥ = 0, which is valid for the diamagnetic flow V1⊥ = B×∇p0/qB
2 in slab

geometry. When ∇ · V1⊥ 6= 0, the ∂u/∂η′ terms should be replaced by ∂u/∂η′ − 1
2
λC∇ · V1⊥

which becomes (3/2)∂u/∂η′ when ∇ · V1⊥ = −∂‖u (∇ · V1 = 0). The fitted kernel functions

KAB(η − η′) are presented in Refs. [8, 9].

For the Fourier transform and its inverse, Ã(k) and A(η), we adopt the convention: Ã(k) =
∫

dηA(η)e−ikη and A(η) = (2π)−1
∫

dkeikηÃ(k). The Fourier transform of
∫

dη′KAB(η −
η′)gB(η

′) is K̃AB(k)g̃B(k) by the convolution theorem. Then Fourier transforming Eqs. (2–4),
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we obtain closures in wave number space (closures for a single-mode sinusoidal drive):

h̃‖ = −1

2
n0v0K̃hhikT̃ + p0ZK̃hRũei − p0K̃hπikũ, (5)

R̃‖ = −1

2

mv0
τei

n0

T0

K̃RhikT̃ − mn0

τei

(

1− ZK̃RR

)

ũei −
mn0

τei
K̃Rπikũ, (6)

π̃ = −n0K̃πhikT̃ + 2
p0
v0
ZK̃πRũei −

p0
v0
K̃ππikũ, (7)

where T̃ is the Fourier transform of T1.

The Fourier transformed kernels K̃AD (A,D = h,R, π) can be compared to the cosine or sine

Fourier transform K̂AD in Ref. [8]. From Eq. (7) of Ref. [8], we rewrite

∫

KAD(η − η′) exp(ikη′)dη′ =











K̂AD exp(ikη), for even

K̂AD(−i) exp(ikη), for odd

(8)

where even means AD = hh, hR, RR, ππ and odd means AD = hπ, Rπ. Since KAD is real,

K̂AD is real and related to K̃AD as

K̂AD =











K̃AD, for even

iK̃AD, for odd

(9)

which follows from the comparison between Eq. (8) for η = 0 and the Fourier transform
∫

KAD(η)e
−ikηdη = K̃AD(k). Therefore the real closure quantities defined in Ref. [9] are re-

lated to the Fourier transformed kernels: ĥh = kK̂hh, ĥR = ZK̂hR = R̂h, ĥπ = kK̂hπ = π̂h,

R̂R = 1 − ZK̂RR, R̂π = ZK̂Rπ = π̂R, and π̂π = kK̂ππ. Using these dimensionless closures ÂD,

we rewrite Eqs. (5–7):

h̃‖ = −1

2
n0v0ĥhiT̃ + p0ĥRũei − p0ĥπũ, (10)

R̃‖ = −1

2

mv0
τee

n0

T0

R̂hikT̃ − mn0

τei
R̂Rũei −

mn0

τee
R̂πkũ, (11)

π̃‖ = −n0π̂hT̃ − 2
p0
v0
π̂Riũei −

p0
v0
π̂πiũ. (12)

These closure relations can be used for general drives represented by a Fourier series or spectrum

in the limit of small fluctuations.

The Fourier transform of the kernels is obtained from the 6400 moment solutions for k . 80

(convergent regime of the moment system) [8] and from the collisionless-limit solution [13]. They

can be fitted to

K̂AB =
akα

1 + d1kδ + d2k2δ + d3k3δ + d4k4δ + d5k5δ + d6k6δ
(13)
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a α δ d1 d2 d3 d4 d5 d6 err.

K̂hh 3.20 0 1/6 0.675 -2.65 1.30 1.97 -0.279 1.58 2.9%

K̂hR 0.703 0 1/6 0 0.837 -4.94 8.43 -4.33 0.824 2.7%

K̂hπ 1.83 1 1/3 1.497 -9.36 21.7 -12.9 4.11 4.575 1.3%

K̂RR 0.494 0 1/6 0.0648 -0.431 0.670 -0.198 0.0347 0 1.0%

K̂Rπ 0.284 1 1/3 0.387 -2.67 6.71 -3.39 2.06 0 1.5%

K̂ππ 0.978 0 1/6 0 0.337 -1.37 1.35 -0.375 0.690 0.8%

Table I: Fitted parameters for real kernels (13) for k ≥ 0. The maximum errors are assessed by the 6400

moment closures in the convergent regime. The kernels for k < 0 can be obtained from K̂AB(−k) =

K̂AB(k) for AB = hh, hR,RR, ππ and K̂AB(−k) = −K̂AB(k) for AB = hπ,Rπ.

within 3% error for k . 80. The fitted parameters are given in Table I. For k & 80, the kernels are

constructed to monotonically approach asymptotic values. When an asymptotic value is nonzero,

the error is still expected to be less than 3%. When an asymptotic value is zero, the percent error

could be large but the corresponding closure value is negligible in the fluid system. Therefore

the fitted kernels are accurate for the entire regime of collisionality. Finally, it should be empha-

sized that even kernels are proportional to 1/|k| and odd kernels are proportional to 1/k in the

collisionless limit in the collisionless limit (|k| → ∞).

III. ELECTRON PARALLEL TRANSPORT

Now we use the closure relations to derive the transport relations. In transport theory, the

particle (charge) and heat flux densities are related to thermodynamic drives: the modified electric

field and temperature gradient. They can be obtained from the momentum balance equation with

closures. The momentum balance equation (1) can be linearized as

n0eE
′
‖ + ∂‖π‖ = R‖ (14)

where the modified electric field is defined as

E ′
‖ = E1‖ +

1

n0e
∂‖p1. (15)
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While Eq. (14), when combined with Eqs. (3) and (4), is an integro-differential equation in con-

figuration space, it becomes an algebraic equation in wave number space

n0eẼ
′
‖ + ikℓπ̃‖ = R̃‖, (16)

where kℓ = 2π/λ = k/λC. We solve this equation by replacing R̃‖ and π̃‖ with Eqs. (11) and (12)

to express ũ in terms of Ẽ ′
‖ and ikℓT̃ .

Since the closure relations involve the ion flow velocity ui in uei, we need the ion momentum

balance equation to find it. However we can show that ui ≪ ue unless ∂‖pi ≫ ∂‖pe, ∂‖Ti ≫ ∂‖Te,

or Ti ≫ Te. Therefore we approximate uei ≈ ue = u and obtain

ũ =
τei
m

(ĥπ − ĥR)ikℓT̃ − eẼ ′
‖

∆
, (17)

where

∆ =
k

Z

(

1

2
π̂π + 2R̂π

)

+ R̂R. (18)

With Eq. (17) obtained, it follows from J‖ = −n0eu and Eq. (10) that

J̃‖ = σ‖Ẽ
′
‖ − α‖ikℓT̃ , (19)

h̃‖ = α‖Ẽ
′
‖ − κ‖ikℓT̃ , (20)

where

σ‖ =
n0e

2τei
m

σ̃‖, σ̃‖ =
1

∆
, (21)

α‖ =
n0eτei
m

α̃‖, α̃‖ =
ĥπ − ĥR

∆
, (22)

κ‖ =
n0T0τei

m
κ̃‖, κ̃‖ = Z

ĥh

k
+

(ĥπ − ĥR)
2

∆
. (23)

Note that the transport relations (19) and (20) for a single harmonic drive appear in classical form

except that the dimensionless transport coefficients (with a tilde) depend on k. In the classical

theory for high collisionality, they are constants.

The dimensionless transport coefficients are plotted in Fig. 1. In the collisional limit (k → 0),

the coefficients reproduce the classical transport coefficients [1, 2, 11]: σ̃‖ → 1.98 ≃ σ̃LS
‖ , α̃‖ →

−1.39, and κ̃‖ → 4.18 which agree with the convergent values from the moment approach [12].

In the collisionless limit (k → ±∞), σ̃‖ → 1.41/|k|, α̃‖ → 0.564/|k|, and κ̃‖ → 2.26/|k| where
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the coefficients agree with the theoretical values in Ref. [13]: 5/2
√
π ≈ 1.41, 1/

√
π ≈ 0.564,

and 4/
√
π ≈ 2.26. Note that τei/|k| = λ/2πv0Z in the transport coefficients (21–23). For given

wavelength of fluctuation λ, they are proportional to T−1/2 at low collisionality.

In the derivation of Eqs. (19) and (20), the V⊥ terms have been ignored. One of them is in

the rate of strain tensor and modifies the ∂u/∂η′ terms to ∂u/∂η′ − 1
2
λC∇ · V1⊥ in the closure

equations (2–4). This introduces an additional term into Eqs. (19) and (20), respectively,

J̃γ = −n0e
k
(

π̂π/2 + R̂π

)

2Z∆

γ̃

ik
, (19′)

and

h̃γ =
p0ĥπ

2

γ̃

ik
, (20′)

where γ̃ =
∫

dηe−ikηλC∇ · V1⊥ =
∫

dℓe−ikℓℓ∇ · V1⊥. In the collisional limit, J̃γ → 0 and

h̃γ → 0 as expected. In the collisionless limit, J̃γ → −n0eγ̃/2ik and h̃γ → p0γ̃/5ik (they become

integration in configuration space). There may be additional modification from the advection term

(V ·∇V)‖ and the gyro-viscosity term (∇·πgv)‖ in the momentum balance equation. These terms

may be accurately treated in a fluid code which evolves the momentum equation.

For arbitrary collisionality, Ohm’s law J‖ = σ‖E‖ can be obtained from the solution of the

reduced kinetic equation

v‖∂‖f1 − Cf1 = − e

m
E‖

∂f0
∂v‖

, (24)

with f0 being a static Maxwellian distribution. In wave number space, the solution is

f̃1 =
e

m
Ẽ‖

∂f0/∂v‖
C − v‖ikℓ

=
e

m

C + v‖ikℓ
C2 + (v‖kℓ)2

∂f0
∂v‖

Ẽ‖, (25)

The key difference from Spitzer theory is the inclusion of the free streaming term v‖∂f1. Without

the streaming term, the electric conductivity increases (resistivity decreases) linearly as the col-

lision time increases (C decreases) linearly. The streaming term, however, plays the role of an

effective collision operator, significantly reducing the conductivity (raising the resistivity) at low

collisionality. In the general moment method, we evaluate the collision and streaming terms accu-

rately to obtain closures and use them in the momentum balance equation. The kinetic effects are

well captured by R‖ and ∂‖π‖, a moment of the streaming term. At low collisionality, the major

contribution to the conductivity (resistivity) comes from the parallel viscosity closure driven by

the flow velocity gradient, π̂π term in Eq. (18).

It should be emphasized that, as k becomes large, kσ̃‖ becomes constant while it is proportional

to k in the Spitzer theory. For a given wavelength of spatial fluctuation, it follows from τei ∝ T 3/2
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and v0 ∝ T 1/2 that σ‖ ∝ T−1/2 while σLS
‖ ∝ T 3/2 in the Spitzer theory. This will modify the

resistivity in the generalized Ohm’s law. Among many applications we note that the magnetic

diffusion and the magnetic reconnection time is determined by τrec = µ0σ‖|∇2|−1 (see e. g., [14]

for general discussion). Therefore the time scale of this work is significantly shorter than that of

Spitzer theory. The quantitative ratio is

τrec
τLSrec

=
σ‖

σLS
‖

k→∞−→ 1

1.40k
=

1

8.82

λ

λC

, (26)

where we note that λC ∝ T 2. The discrepancy is greater at higher temperature (lower collision-

ality) for given density and wavelength. This implies that spatial inhomogeneity enhances fast

magnetic reconnection when the gradient scale length is much smaller than the collision length.

The magnetic reconnection process is faster at higher temperature (low collisionality) and with a

shorter wavelength of fluctuation (gradient scale length).

IV. CONCLUSION

Electron parallel transport relations are derived from integral closures for arbitrary collisional-

ity. The relations make considerable modification to the Spitzer theory for low collisionality. The

modification is mainly due to accurate evaluation of the kinetic response in deriving the parallel

viscosity closure driven by the flow velocity gradient [π̂π in Eq. (18)]. The transport relations

derived here will evaluate parallel electric current and heat flux densities accurately for arbitrary

collisionality in the low-frequency, linear regime.

Many plasma fluid codes evolve the momentum (flow velocity) evolution equation without

imposing adiabatic and linear approximations on the equation. Since the major modification orig-

inates from the viscosity term, adopting the integral closures introduces the effects of modified

transport relations with the nonlinear and non-adiabatic terms kept. In particular, the closure re-

lations in wave number space can be conveniently implemented in BOUT++ [15] using the fast

non-Fourier method [16]. In NIMROD [17] simulations, the electric resistivity with a represen-

tative wave number can be used in the generalized Ohm’s law with or without Hall, advection,

inertia, terms, etc. For a given wave number k and angular frequency ω, the effects of inertia and

nonlinear terms in the momentum equation can be evaluated by the Fourier expansion method.

The inertia term will introduce a −iω factor into the equation. The nonlinear advection term,

u∂‖u, for example, will introduce coupling terms between different wave numbers
∑

k′ uk′uk−k′
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Figure 1: (Color online) Transport coefficients, Eqs. (21–23) for sinusoidal drives are plotted from the

integral closures (red, solid). Landshoff-Spitzer’s collisional (blue, dotted) and the collisionless (black,

dashed) limits are also shown.
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into the k mode equation. This will further modify the transport coefficients. The Fourier method

will be used to analyze the results of numerical simulations.
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