939 research outputs found
Collisional transport across the magnetic field in drift-fluid models
Drift ordered fluid models are widely applied in studies of low-frequency
turbulence in the edge and scrape-off layer regions of magnetically confined
plasmas. Here, we show how collisional transport across the magnetic field is
self-consistently incorporated into drift-fluid models without altering the
drift-fluid energy integral. We demonstrate that the inclusion of collisional
transport in drift-fluid models gives rise to diffusion of particle density,
momentum and pressures in drift-fluid turbulence models and thereby obviate the
customary use of artificial diffusion in turbulence simulations. We further
derive a computationally efficient, two-dimensional model which can be time
integrated for several turbulence de-correlation times using only limited
computational resources. The model describes interchange turbulence in a
two-dimensional plane perpendicular to the magnetic field located at the
outboard midplane of a tokamak. The model domain has two regions modeling open
and closed field lines. The model employs a computational expedient model for
collisional transport. Numerical simulations show good agreement between the
full and the simplified model for collisional transport
Alkaloid quantities in endophyte-infected tall fescue are affected by the plant-fungus combination and environment
201
Evaluation of the Workplace Environment in the UK, and the Impact on Users’ Levels of Stimulation
The purpose of this study is to evaluate a number of recently completed workplaces in the UK. The first aim is to assess the impact of various aspects of the workplace environment on users’ levels of stimulation. The body of previous research undertaken into the workplace environment, identified the aspects to be investigated. Samples of employees from the sixteen businesses were surveyed to determine their perceptions of the workplaces. The results were entered into a regression analysis, and the most significant predictors of perceived stimulation identified. The data also revealed a dramatic reduction in staff arousal levels from mornings to afternoons. Thus, there is a second aim to determine whether changes to significant aspects of the workplace environment during the day can counteract the reduction in users’ stimulation. Two further workplaces were studied to enable changes to be made over a 12-week period. A sample of employees completed questionnaires, and semi-structured interviews revealed the reasons behind the results. It was found that provision of artwork, personal control of temperature and ventilation and regular breaks were the most significant contributions to increasing stimulation after lunch; while user choice of layout, and design and décor of workspaces and break areas, were the most significant aspects at design stage
Understanding the effect of sheared flow on microinstabilities
The competition between the drive and stabilization of plasma
microinstabilities by sheared flow is investigated, focusing on the ion
temperature gradient mode. Using a twisting mode representation in sheared slab
geometry, the characteristic equations have been formulated for a dissipative
fluid model, developed rigorously from the gyrokinetic equation. They clearly
show that perpendicular flow shear convects perturbations along the field at a
speed we denote by (where is the sound speed), whilst parallel
flow shear enters as an instability driving term analogous to the usual
temperature and density gradient effects. For sufficiently strong perpendicular
flow shear, , the propagation of the system characteristics is
unidirectional and no unstable eigenmodes may form. Perturbations are swept
along the field, to be ultimately dissipated as they are sheared ever more
strongly. Numerical studies of the equations also reveal the existence of
stable regions when , where the driving terms conflict. However, in both
cases transitory perturbations exist, which could attain substantial amplitudes
before decaying. Indeed, for , they are shown to exponentiate
times. This may provide a subcritical route to turbulence in
tokamaks.Comment: minor revisions; accepted to PPC
Stellarator bootstrap current and plasma flow velocity at low collisionality
The bootstrap current and flow velocity of a low-collisionality stellarator plasma are calculated. As far as possible, the analysis is carried out in a uniform way across all low-collisionality regimes in general stellarator geometry, assuming only that the confinement is good enough that the plasma is approximately in local thermodynamic equilibrium. It is found that conventional expressions for the ion flow speed and bootstrap current in the low-collisionality limit are accurate only in the -collisionality regime and need to be modified in the -regime. The correction due to finite collisionality is also discussed and is found to scale as
- …
