209 research outputs found

    CO oxidation on a single Pd atom supported on magnesia

    Full text link
    The oxidation of CO on single Pd atoms anchored to MgO(100) surface oxygen vacancies is studied with temperature-programmed-reaction mass-spectrometry and infrared spectroscopy. In one-heating-cycle experiments CO2_2, formed from O2_2 and CO preadsorbed at 90 K, is detected at 260 K and 500 K. Ab-initio simulations suggest two reaction routes, with Pd(CO)2_2O2_2 and Pd(CO3_3)CO found as precursors for the low and high temperature channels, respectively. Both reactions result in annealing of the vacancy and induce migration and coalescence of the remaining Pd-CO to form larger clusters.Comment: 4 pages, 3 figures, scheduled for publication in PRL 18 June 200

    Supported magnetic nanoclusters: Softlanding of Pd clusters on a MgO surface

    Full text link
    Low-energy deposition of neutral Pd_N clusters (N=2-7 and 13) on a MgO(001) surface F-center (FC) was studied by spin-density-functional molecular dynamics simulations. The incident clusters are steered by an attractive "funnel" created by the FC, resulting in adsorption of the cluster, with one of its atoms bonded atop of the FC. The deposited Pd_2-Pd_6 clusters retain their gas-phase structures, while for N>6 surface-commensurate isomers are energetically more favorable. Adsorbed clusters with N > 3 are found to remain magnetic at the surface.Comment: 5 pages, 2 figs, Phys.Rev.Lett., accepte

    Structure and Magnetism of Neutral and Anionic Palladium Clusters

    Full text link
    The properties of neutral and anionic Pd_N clusters were investigated with spin-density-functional calculations. The ground state structures are three-dimensional for N>3 and they are magnetic with a spin-triplet for 2<=N<=7 and a spin nonet for N=13 neutral clusters. Structural- and spin-isomers were determined and an anomalous increase of the magnetic moment with temperature is predicted for a Pd_7 ensemble. Vertical electron detachment and ionization energies were calculated and the former agree well with measured values for anionic Pd_N clusters.Comment: 5 pages, 3 figures, fig. 2 in color, accepted to Phys. Rev. Lett. (2001

    Oxygen adsorption on Au clusters and a rough Au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap

    Get PDF
    It has been shown recently that while bulk gold is chemically inert, small Au clusters are catalytically active. The reasons for this activity and its dramatic dependence on cluster size are not understood. We use density functional theory to study O2 binding to Au clusters and to a Au(111) surface modified by adsorption of Au clusters on it. We find that O2 does not bind to a flat face of a planar Au cluster, even though it binds well to its edge. Moreover, O2 binds to Au clusters deposited on a Au(111) surface, even though it does not bind to Au(111). This indicates that a band gap is not an essential factor in binding O2, but surface roughness is. Adding electrons to the surface of a Au(111) slab, on which one has deposited a Au cluster, increases the binding energy of O2. However, adding electrons to a flat Ausurface has no effect on O2binding energy. These observations have a simple explanation: in clusters and in the rough surface, the highest occupied molecular orbital (HOMO) is localized and its charge density sticks out in the vacuum. This facilitates charge transfer into the π* orbital of O2, which induces the molecule to bind to gold. A flat face of a cluster or a flat bulk surface tends to delocalize the HOMO, diminishing the ability of the surface to bind O2. The same statements are true for the LUMO orbital, which is occupied by the additional electron given to the system to charge the system negatively

    Identification of defect sites on MgO(100) thin films by decoration with Pd atoms and studying CO adsorption properties

    Get PDF
    CO adsorption on Pd atoms deposited on MgO(100) thin films has been studied by means of thermal desorption (TDS) and Fourier transform infrared (FTIR) spectroscopies. CO desorbs from the adsorbed Pd atoms at a temperature of about 250 K, which corresponds to a binding energy, E-b, of about 0.7 +/- 0.1 eV. FTIR spectra suggest that at saturation two different sites for CO adsorption exist on a single Pd atom. The vibrational frequency of the most stable, singly adsorbed CO molecule is 2055 cm(-1). Density functional cluster model calculations have been used to model possible defect sites at the MgO surface where the Pd atoms are likely to be adsorbed. CO/Pd complexes located at regular or low-coordinated O anions of the surface exhibit considerably stronger binding energies, E-b = 2-2.5 eV, and larger vibrational shifts than were observed in the experiment. CO/Pd complexes located at oxygen vacancies (F or F+ centers) are characterized by much smaller binding energies, E-b = 0.5 +/- 0.2 or 0.7 +/- 0.2 eV, which are in agreement with the experimental value. CO/Pd complexes located at the paramagnetic F+ centers show vibrational frequencies in closest agreement with the experimental data. These comparisons therefore suggest that the Pd atoms are mainly adsorbed at oxygen vacancies

    Aromaticity in a Surface Deposited Cluster: Pd4_4 on TiO2_2 (110)

    Full text link
    We report the presence of \sigma-aromaticity in a surface deposited cluster, Pd4_4 on TiO2_2 (110). In the gas phase, Pd4_4 adopts a tetrahedral structure. However, surface binding promotes a flat, \sigma-aromatic cluster. This is the first time aromaticity is found in surface deposited clusters. Systems of this type emerge as a promising class of catalyst, and so realization of aromaticity in them may help to rationalize their reactivity and catalytic properties, as a function of cluster size and composition.Comment: 4 pages, 3 figure

    Surface Deposition and Imaging of Large Ag Clusters Formed in He Droplets

    Full text link
    The utility of a continuous beam of He droplets for the assembly and surface deposition of Ag clusters, ~ 300 - 6 000, is studied with transmission electron microscopy. Images of the clusters on amorphous carbon substrates obtained at short deposition times have provided for a measure of the size distribution of the metal clusters. The average sizes of the deposited clusters are in good agreement with an energy balance based estimate of Ag cluster growth in He droplets. Measurements of the deposition rate indicate that upon impact with the surface the He-embedded cluster is attached with high probability. The stability of the deposited clusters on the substrate is discussed.Comment: 24 pages, 5 figure

    Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D

    Get PDF
    [EN] Single metal atoms and metal clusters have attracted much attention thanks to their advantageous capabilities as heterogeneous catalysts. However, the generation of stable single atoms and clusters on a solid support is still challenging. Herein, we report a new strategy for the generation of single Pt atoms and Pt clusters with exceptionally high thermal stability, formed within purely siliceous MCM-22 during the growth of a two-dimensional zeolite into three dimensions. These subnanometric Pt species are stabilized by MCM-22, even after treatment in air up to 540 degrees C. Furthermore, these stable Pt species confined within internal framework cavities show size-selective catalysis for the hydrogenation of alkenes. High-temperature oxidation-reduction treatments result in the growth of encapsulated Pt species to small nanoparticles in the approximate size range of 1 to 2 nm. The stability and catalytic activity of encapsulated Pt species is also reflected in the dehydrogenation of propane to propylene.This work was funded by the Spanish Government (Consolider Ingenio 2010-MULTICAT (CSD2009-00050) and MAT2014-52085-C2-1-P) and by the Generalitat Valenciana (Prometeo). The Severo Ochoa Program (SEV-2012-0267) is gratefully acknowledged. L.L. thanks ITQ for a contract. The authors also thank the Microscopy Service of UPV for the TEM and STEM measurements. The HAADF-HRSTEM works were conducted in the Laboratorio de Microscopias Avanzadas (LMA) at the Instituto de Nanociencia de Aragon (INA)-Universidad de Zaragoza (Spain), a Spanish ICTS National Facility. Some of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative-I3). R.A. also acknowledges funding from the Spanish Ministerio de Economia y Competitividad (FIS2013-46159-C3-3-P) and the European Union Horizon 2020 research and innovation programme under the Marie Sldodowska-Curie grant agreement No. 642742.Liu, L.; DĂ­az Morales, UM.; Arenal, R.; Agostini, G.; ConcepciĂłn Heydorn, P.; Corma CanĂłs, A. (2017). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials. 16(1):132-138. https://doi.org/10.1038/NMAT4757S132138161Boronat, M., Leyva-Perez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014).Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Ann. Rev. Chem. Bio. Eng. 3, 545–574 (2012).Gates, B. C. Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995).Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013).Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).Rivallan, M. et al. Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. Angew. Chem. Int. Ed. 49, 785–789 (2010).Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite Y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013).Philippaerts, A. et al. Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite. Angew. Chem. Int. Ed. 50, 3947–3949 (2011).Kim, J., Kim, W., Seo, Y., Kim, J.-C. & Ryoo, R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: effects of zeolite crystal thickness and platinum location. J. Catalys. 301, 187–197 (2013).Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).Choi, M., Yook, S. & Kim, H. Hydrogen spillover in encapsulated metal catalysts: new opportunities for designing advanced hydroprocessing catalysts. ChemCatChem 7, 1048–1057 (2015).Kulkarni, A., Lobo-Lapidus, R. J. & Gates, B. C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46, 5997–6015 (2010).Guzman, J. & Gates, B. C. Supported molecular catalysts: metal complexes and clusters on oxides and zeolites. Dalton Trans. 1, 3303–3318 (2003).Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264, 1910–1913 (1994).Camblor, M. A. et al. A new microporous polymorph of silica isomorphous to zeolite MCM-22. Chem. Mater. 8, 2415–2417 (1996).Hyotanishi, M., Isomura, Y., Yamamoto, H., Kawasaki, H. & Obora, Y. Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. 47, 5750–5752 (2011).Duchesne, P. N. & Zhang, P. Local structure of fluorescent platinum nanoclusters. Nanoscale 4, 4199–4205 (2012).Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012).YacamĂĄn, M. J., Santiago, U. & MejĂ­a-Rosales, S. in Advanced Transmission Electron Microscopy: Applications to Nanomaterials (eds Francis, L., Mayoral, A. & Arenal, R.) 1–29 (Springer, 2015).Jena, P., Khanna, S. N. & Rao, B. K. Physics and Chemistry of Finite Systems: From Clusters to Crystals (Springer, 1992).Yamasaki, J. et al. Ultramicroscopy 151, 224–231 (2015).Sohlberg, K., Pennycook, T. J., Zhoud, W. & Pennycook, S. J. Insights into the physical chemistry of materials from advances in HAADF-STEM. Phys. Chem. Chem. Phys. 17, 3982–4006 (2015).Aydin, C., Lu, J., Browning, N. D. & Gates, B. C. A ‘smart’ catalyst: sinter-resistant supported iridium clusters visualized with electron microscopy. Angew. Chem. Int. Ed. 51, 5929–5934 (2012).Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).Addou, R. et al. Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-2 × 1. ACS Nano 8, 6321–6333 (2014).Jung, U. et al. Comparative in operando studies in heterogeneous catalysis: atomic and electronic structural features in the hydrogenation of ethylene over supported Pd and Pt catalysts. ACS Catal. 5, 1539–1551 (2015).Agostini, G. et al. Effect of different face centered cubic nanoparticle distributions on particle size and surface area determination: a theoretical study. J. Phys. Chem. C 118, 4085–4094 (2014).Alexeev, O. & Gates, B. C. EXAFS characterization of supported metal-complex and metal-cluster catalysts made from organometallic precursors. Top. Catal. 10, 273–293 (2000).Chakraborty, I., Bhuin, R. G., Bhat, S. & Pradeep, T. Blue emitting undecaplatinum clusters. Nanoscale 6, 8561–8564 (2014).Zheng, J., Nicovich, P. R. & Dickson, R. M. Highly fluorescent noble-metal quantum dots. Ann. Rev. Phys. Chem. 58, 409–431 (2007).Okrut, A. et al. Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst. Nat. Nanotech. 9, 459–465 (2014).Zhou, C. et al. On the sequential hydrogen dissociative chemisorption on small platinum clusters: a density functional theory study. J. Phys. Chem. C 111, 12773–12778 (2007).De La Cruz, C. & Sheppard, N. An exploration of the surfaces of some Pt/SiO2 catalysts using CO as an infrared spectroscopic probe. Spectrochim. Acta A 50, 271–285 (1994).KlĂŒnker, C., Balden, M., Lehwald, S. & Daum, W. CO stretching vibrations on Pt(111) and Pt(110) studied by sum frequency generation. Surf. Sci. 360, 104–111 (1996).Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995).Heiz, U., Sanchez, A., Abbet, S. & Schneider, W. D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999).Levitas, V. I. & Samani, K. Size and mechanics effects in surface-induced melting of nanoparticles. Nat. Commun. 2, 284 (2011).Jiang, H., Moon, K.-s., Dong, H., Hua, F. & Wong, C. P. Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429, 492–496 (2006).Nanda, K. K., Kruis, F. E. & Fissan, H. Evaporation of free PbS nanoparticles: evidence of the Kelvin effect. Phys. Rev. Lett. 89, 256103 (2002).Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009).Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotech. 5, 506–510 (2010).Koch, C. Determination of Core Structure Periodicity and Point Defect Density along Dislocations PhD thesis, Univ. Arizona (2002).Mathon, O. et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Radiat. 22, 1548–1554 (2015).Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001)
    • 

    corecore