66 research outputs found

    Das Kapitalanleger-Musterverfahrensgesetz als Lösung zur Bewältigung von Massenverfahren

    Full text link
    8.000 kg Papier, überquellende Geschäftsstellenzimmer, zusammenbrechende Faxgeräte und Aussichten auf Verfahrensdauern von 15 Jahren - die „Telekom-Prozesse“ vor dem Landgericht Frankfurt zeigten die Probleme auf, vor die Massenverfahren das deutsche Zivilprozessrecht stellen. Diesem versuchte der Gesetzgeber im Jahr 2005 mit dem KapMuG zu begegnen. Auf der Grundlage einer Untersuchung der Möglichkeiten und Grenzen des überkommenen deutschen Zivilprozessrechts sowie ausgewählter ausländischer Verfahrensregelungen überprüft der Autor die Praxistauglichkeit des KapMuG. Im Ergebnis ist diese zu bejahen. Zudem wäre eine Ausdehnung des Verfahrens nach dem KapMuG auf andere Bereiche sinnvoll. Dabei sind jedoch vorhandene Schwächen des KapMuG zu beheben. Hierfür liefert der Autor konkrete Verbesserungsvorschläge. <br/

    Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    Get PDF
    We introduce the \texttt{pyunicorn} (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. \texttt{pyunicorn} is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics or network surrogates. Additionally, \texttt{pyunicorn} provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis (RQA), recurrence networks, visibility graphs and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.Comment: 28 pages, 17 figure

    Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World-Earth modeling framework

    Get PDF
    Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes

    Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World-Earth modeling framework

    Get PDF
    Analysis of Earth system dynamics in the Anthropocene requires to explicitly take into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth System Models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic Integrated Assessment Models typically do so only with limited scope. This paper (i) proposes design principles for constructing World-Earth Models (WEM) for Earth system analysis of the Anthropocene, i.e., models of social (World) - ecological (Earth) co-evolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g. carbon cycle dynamics), socio-metabolic/economic (e.g. economic growth) and socio-cultural processes (e.g. voting on climate policies or changing social norms) and their feedback interactions, and are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic/economic and socio-cultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing socio-cultural processes and feedbacks could fundamentally change macroscopic model outcomes

    Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes

    Full text link
    When network and graph theory are used in the study of complex systems, a typically finite set of nodes of the network under consideration is frequently either explicitly or implicitly considered representative of a much larger finite or infinite region or set of objects of interest. The selection procedure, e.g., formation of a subset or some kind of discretization or aggregation, typically results in individual nodes of the studied network representing quite differently sized parts of the domain of interest. This heterogeneity may induce substantial bias and artifacts in derived network statistics. To avoid this bias, we propose an axiomatic scheme based on the idea of node splitting invariance to derive consistently weighted variants of various commonly used statistical network measures. The practical relevance and applicability of our approach is demonstrated for a number of example networks from different fields of research, and is shown to be of fundamental importance in particular in the study of spatially embedded functional networks derived from time series as studied in, e.g., neuroscience and climatology.Comment: 21 pages, 13 figure
    corecore