91 research outputs found

    an inside look at the Altiplano and Puna plateaus

    Get PDF
    thesi

    Random Expert Sampling for Deep Learning Segmentation of Acute Ischemic Stroke on Non-contrast CT

    Full text link
    Purpose: Multi-expert deep learning training methods to automatically quantify ischemic brain tissue on Non-Contrast CT Materials and Methods: The data set consisted of 260 Non-Contrast CTs from 233 patients of acute ischemic stroke patients recruited in the DEFUSE 3 trial. A benchmark U-Net was trained on the reference annotations of three experienced neuroradiologists to segment ischemic brain tissue using majority vote and random expert sampling training schemes. We used a one-sided Wilcoxon signed-rank test on a set of segmentation metrics to compare bootstrapped point estimates of the training schemes with the inter-expert agreement and ratio of variance for consistency analysis. We further compare volumes with the 24h-follow-up DWI (final infarct core) in the patient subgroup with full reperfusion and we test volumes for correlation to the clinical outcome (mRS after 30 and 90 days) with the Spearman method. Results: Random expert sampling leads to a model that shows better agreement with experts than experts agree among themselves and better agreement than the agreement between experts and a majority-vote model performance (Surface Dice at Tolerance 5mm improvement of 61% to 0.70 +- 0.03 and Dice improvement of 25% to 0.50 +- 0.04). The model-based predicted volume similarly estimated the final infarct volume and correlated better to the clinical outcome than CT perfusion. Conclusion: A model trained on random expert sampling can identify the presence and location of acute ischemic brain tissue on Non-Contrast CT similar to CT perfusion and with better consistency than experts. This may further secure the selection of patients eligible for endovascular treatment in less specialized hospitals

    Connection between the Jurassic oceanic lithosphere of the Gulf of Cádiz and the Alboran slab imaged by Sp receiver functions

    Get PDF
    We investigate the lithospheric structure beneath the Gibraltar arc (western Mediterranean) using S-wave receiver functions (SRFs). From a dense network deployed in the Ibero-Maghrebian region during different seismic surveys, we calculated ~11,000 SRFs that sample the upper mantle detecting the lithosphere-asthenosphere boundary (LAB). The observed seismic LAB belongs to different lithospheric domains: Iberian and African forelands, Alboran domain, and Atlantic Ocean. Common conversion point (CCP) migrated profiles show the geometrical relation among them. Under the Strait of Gibraltar, we observe a deep LAB (~150 km). It can be associated with Jurassic-age lithosphere of ~120 km thickness, one of the thickest ever reported in oceanic environments. There is an abrupt offset between the oceanic LAB and the shallow (80-km-deep) continental LAB of the Iberian foreland, suggesting displacement along a former transform fault. The northwestern African continental LAB is 90–100 km deep. The oceanic LAB under the Gibraltar arc continues to ~180 km depth beneath the Alboran Sea, showing the connection between the Alboran slab and the oceanic lithosphere in the central Gulf of Cádiz. This geometry agrees with an ~200-km-wide corridor of oceanic lithosphere between the central Atlantic and the Alpine Tethys, developed during the Middle–Late Jurassic. Our results support the proposed westward rollback of an oceanic east-dipping slab, which has continuity at least to the central Gulf of Cádiz.This work was supported by the Spanish national projects CGL2015-67130-C2-2-R/FEDER and CGL2012-31472

    3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de Azúcar, Chile, revealed by Bayesian inversion of HVSR curves

    Get PDF
    Seismic methods are emerging as efficient tools for imaging the subsurface to investigate the weathering zone. The structure of the weathering zone can be identified by differing shear wave velocities as various weathering processes will alter the properties of rocks. Currently, 3D subsurface modelling of the weathering zone is gaining increasing importance as results allow the identification of the weathering imprint in the subsurface not only from top to bottom but also in three dimensions. We investigated the 3D weathering structure of monzogranite bedrock near the Pan de Azúcar National Park (Atacama Desert, northern Chile), where the weathering is weak due to the arid climate conditions. We set up an array measurement that records seismic ambient noise, which we used to extract the horizontal-to-vertical spectral ratio (HVSR) curves. The curves were then used to invert for 1D shear wave velocity (Vs) models, which we then used to compile a pseudo-3D model of the subsurface structure in our study area. To invert the 1D Vs model, we applied a transdimensional hierarchical Bayesian inversion scheme, allowing us to invert the HVSR curve with minimal prior information. The resulting 3D model allowed us to image the granite gradient from the surface down to ca. 50 m depth and confirmed the presence of dikes of mafic composition intruding the granite. We identified three main zones of fractured granite, altered granite, and the granite bedrock in addition to the mafic dikes with relatively higher Vs. The fractured granite layer was identified with Vs of 1.4 km s−1 at 30–40 m depth, while the granite bedrock was delineated with Vs of 2.5 km s−1 and a depth range between 10 and 50 m depth. We compared the resulting subsurface structure to other sites in the Chilean coastal cordillera located in various climatic conditions and found that the weathering depth and structure at a given location depend on a complex interaction between surface processes such as precipitation rate, tectonic uplift and fracturing, and erosion. Moreover, these local geological features such as the intrusion of mafic dikes can create significant spatial variations to the weathering structure and therefore emphasize the importance of 3D imaging of the weathering structure. The imaged structure of the subsurface in Pan de Azúcar provides the unique opportunity to image the heterogeneities of a rock preconditioned for weathering but one that has never experienced extensive weathering given the absence of precipitation.</p

    Constraints on Crustal Structure in the Vicinity of the Adriatic Indenter (European Alps) From Vp and Vp/Vs Local Earthquake Tomography

    Get PDF
    In this study, 3-D models of P-wave velocity (Vp) and P-wave and S-wave ratio (Vp/Vs) of the crust and upper mantle in the Eastern and eastern Southern Alps (northern Italy and southern Austria) were calculated using local earthquake tomography (LET). The data set includes high-quality arrival times from well-constrained hypocenters observed by the dense, temporary seismic networks of the AlpArray AASN and SWATH-D. The resolution of the LET was checked by synthetic tests and analysis of the model resolution matrix. The small inter-station spacing (average of ∼15 km within the SWATH-D network) allowed us to image crustal structure at unprecedented resolution across a key part of the Alps. The derived P velocity model revealed a highly heterogeneous crustal structure in the target area. One of the main findings is that the lower crust is thickened, forming a bulge at 30–50 km depth just south of and beneath the Periadriatic Fault and the Tauern Window. This indicates that the lower crust decoupled both from its mantle substratum as well as from its upper crust. The Moho, taken to be the iso-velocity contour of Vp = 7.25 km/s, agrees with the Moho depth from previous studies in the European and Adriatic forelands. It is shallower on the Adriatic side than on the European side. This is interpreted to indicate that the European Plate is subducted beneath the Adriatic Plate in the Eastern and eastern Southern Alps

    Structure and seismogenic activity of the broken foreland to the south of the Chilean-Pampean flat subduction zone: The San Rafael Block

    Get PDF
    Andean broken foreland zones, located to the east of the highest Andes, are associated with populated areas and sedimentary basins with relative economic importance. Understanding their seismogenic potential is crucial for urban development and infrastructure planning. In particular, the San Rafael Block is part of the broken foreland developed to the south of the Chilean-Pampean flat subduction zone. A local seismic network allows analyzing the seismogenic potential of the San Rafael Block. Earthquake distribution suggests a northeast-dipping ramp rooting at the lower crust, cropping out at the western topographic front of the basement uplift. Gravity data confirm the asymmetry of the San Rafael block with a western topographic front associated with the main structure that exhumes the basement. Seismological and gravity data allow proposing a west-verging structure, contrary to previous interpretations based on surficial structural data. The results presented here identify the highest shallow seismogenic potential on the western side of the block, near the El Nihuil dam, and only deep events at the eastern neotectonic front which allegedly hosted historical earthquake occurrences such as the Villa Atuel-Las Malvinas earthquake in 1929.Fil: Olivar, Julián Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Nacif Suvire, Silvina Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Gimenez, Mario Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Heit, Benjamin. German Research Centre for Geosciences; AlemaniaFil: Fennell, Lucas Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin

    Crustal structure of the Lazufre volcanic complex and the Southern Puna from 3-D inversion of magnetotelluric data: Implications for surface uplift and evidence for melt storage and hydrothermal fluids

    Get PDF
    The Central Andes are unique in the global system of subduction zones in that a significant, high-altitude plateau has formed above a subduction zone. In this region, both subduction and the associated magmatism have been shown to vary in both space and time. Geophysical data have been invaluable in determining the subsurface structure of this region. Extensive seismic studies have determined the regional-scale distribution of partial melt in the crust and upper mantle. Magnetotelluric studies have been effective in providing independent constraints on the quantity and composition of partial melt in the crust and upper mantle. Geodetic studies have shown that a small number of volcanic centers exhibit persistent, long-term uplift that may indicate the formation of plutons or future eruptions. This paper describes a detailed study of the Southern Puna using magnetotelluric (MT) data. This region is located at the southern limit of the Central Andes in a region where a recent transition from flat-slab subduction to normal subduction has caused an increase in magmatism, in addition to hypothesized lithospheric delamination. It is also a region where an extensive zone adjacent to the volcanic arc is undergoing surface uplift, located near Volcán Lastarria and Cordon del Azufre (collectively called Lazufre). The main goals of the work are to define the crustal structure and to investigate processes that may cause surface uplift of relatively large regions not associated with active volcanism. As part of the PLUTONS project, MT data were collected on an east-west transect (approximately along 25°S) that extended across the Southern Puna, from Lazufre to north of Cerro Galan. The data were combined with previously collected MT data around Lazufre and inverted to give a 3-D resistivity model of the crust. The low resistivity of the crust resulted in limited sensitivity to mantle structure. A number of major crustal conductors were detected and included (1) a mid-crustal conductor extending eastward from the volcanic arc as far as the Salar de Antofalla; (2) an upper- to mid-crustal conductor located north of Cerro Galan; and (3) a conductor that rises westward from (1) and terminates directly beneath the region of surface uplift at Lazufre. These conductors are broadly coincident with the location of crustal lowshear-wave anomalies. The conductive features were interpreted to be due to zones of partial melt stored in the crust, and petrological data were used to estimate melt fractions. Below Lazufre, it is likely that aqueous fluids contribute to the high conductivity, which is observed within the depth range of the inflation source, giving evidence that the surface uplift may be associated with both magmatic and hydrothermal processes

    Non-inferiority of Deep Learning Model to Segment Acute Stroke on Non-contrast CT Compared to Neuroradiologists

    Full text link
    Purpose: To develop a deep learning model to segment the acute ischemic infarct on non-contrast Computed Tomography (NCCT). Materials and Methods In this retrospective study, 227 Head NCCT examinations from 200 patients enrolled in the multicenter DEFUSE 3 trial were included. Three experienced neuroradiologists (experts A, B and C) independently segmented the acute infarct on each study. The dataset was randomly split into 5 folds with training and validation cases. A 3D deep Convolutional Neural Network (CNN) architecture was optimized for the data set properties and task needs. The input to the model was the NCCT and the output was a segmentation mask. The model was trained and optimized on expert A. The outcome was assessed by a set of volume, overlap and distance metrics. The predicted segmentations of the best model and expert A were compared to experts B and C. Then we used a paired Wilcoxon signed-rank test in a one-sided test procedure for all metrics to test for non-inferiority in terms of bias and precision. Results: The best performing model reached a Surface Dice at Tolerance (SDT)5mm of 0.68 \pm 0.04. The predictions were non-inferior when compared to independent experts in terms of bias and precision (paired one-sided test procedure for differences in medians and bootstrapped standard deviations with non-inferior boundaries of -0.05, 2ml, and 2mm, p < 0.05, n=200). Conclusion: For the segmentation of acute ischemic stroke on NCCT, our 3D CNN trained with the annotations of one neuroradiologist is non-inferior when compared to two independent neuroradiologists

    The SWATH‐D seismological network in the Eastern Alps

    Get PDF
    The SWATH-D experiment involved the deployment of a dense temporary broadband seismic network in the Eastern Alps. Its primary purpose was enhanced seismic imaging of the crust and crust-mantle transition as well as improved constraints on local event locations and focal mechanisms in a complex part of the Alpine orogen. The study region is a key area of the Alps, where European crust in the north is juxtaposed and partially interwoven with Adriatic crust in the south, and a significant jump in the Moho depth was observed by the 2001 TRANSALP N-S profile. Here, a flip in subduction polarity has been suggested to occur. This dense network encompasses 163 stations and complements the larger-scale sparser AlpArray seismic network. The nominal station spacing in SWATH-D is 15 km in a high alpine, yet densely populated and industrialized region. We present here the challenges resulting from operating a large broadband network under these conditions and summarize how we addressed them, including the way we planned, deployed, maintained and operated the stations in the field. Finally, we present some recommendations based on our experiences
    corecore