21 research outputs found
Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 1
The AER two-dimensional chemistry-transport model is used to study the effect on stratospheric ozone (O3) from operations of supersonic and subsonic aircraft. The study is based on six emission scenarios provided to AER. The study showed that: (1) the O3 response is dominated by the portion of the emitted nitrogen compounds that is entrained in the stratosphere; (2) the entrainment is a sensitive function of the altitude at which the material is injected; (3) the O3 removal efficiency of the emitted material depends on the concentrations of trace gases in the background atmosphere; and (4) evaluation of the impact of fleet operations in the future atmosphere must take into account the expected changes in trace gas concentrations from other activities. Areas for model improvements in future studies are also discussed
Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 2
The AER two-dimensional chemistry-transport model is used to study the effect of supersonic and subsonic aircraft operation in the 2010 atmosphere on stratospheric ozone (O3). The results show that: (1) the calculated O3 response is smaller in the 2010 atmosphere compared to previous calculations performed in the 1980 atmosphere; (2) with the emissions provided, the calculated decrease in O3 column is less than 1 percent; and (3) the effect of model grid resolution on O3 response is small provided that the physics is not modified
Benefits of Realist Ontologies to Systems Engineering
Applied ontologies have been used more and more frequently to enhance systems engineering. In this paper, we argue that adopting principles of ontological realism can increase the benefits that ontologies have already been shown to provide to the systems engineering process. Moreover, adopting Basic Formal Ontology (BFO), an ISO standard for top-level ontologies from which more domain specific ontologies are constructed, can lead to benefits in four distinct areas of systems engineering: (1) interoperability, (2) standardization, (3) testing, and (4) data exploitation. Reaping these benefits in a model-based systems engineering (MBSE) context requires utilizing an ontology’s vocabulary when modeling systems and entities within those systems. If the chosen ontology abides by the principles of ontological realism, a semantic standard capable of uniting distinct domains, using BFO as a hub, can be leveraged to promote greater interoperability among systems. As interoperability and standardization increase, so does the ability to collect data during the testing and implementation of systems. These data can then be reasoned over by computational reasoners using the logical axioms within the ontology. This, in turn, generates new data that would have been impossible or too inefficient to generate without the aid of computational reasoners
Ontology of plays for autonomous teaming and collaboration
We propose a domain-level ontology of plays for the facilitation of play-based collaborative autonomy among unmanned and manned-unmanned aircraft teams in the Army’s Unmanned Aircraft System (UAS) mission domain. We define a play as a type of plan that prescribes some pattern of intentional acts that are intended to reliably result in some goal in some competitive context, and which specifies one or more roles that are realized by those prescribed intentional acts. The ontology is well suited to be extended to other types of military and nonmilitary unmanned vehicle operations
Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms
The genetic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. We used an innovative matched case–control design and conditional logistic regression to evaluate associations between polymorphisms of complement C1q and prion protein (Prnp) genes and CWD infection in white-tailed deer from the CWD endemic area in southcentral Wisconsin. To reduce problems due to admixture or disease-risk confounding, we used neutral genetic (microsatellite) data to identify closely related CWD-positive (n = 68) and CWD-negative (n = 91) female deer to serve as matched cases and controls. Cases and controls were also matched on factors (sex, location, age) previously demonstrated to affect CWD infection risk. For Prnp, deer with at least one Serine (S) at amino acid 96 were significantly less likely to be CWD-positive relative to deer homozygous for Glycine (G). This is the first characterization of genes associated with the complement system in white-tailed deer. No tests for association between any C1q polymorphism and CWD infection were significant at p \u3c 0.05. After controlling for Prnp, we found weak support for an elevated risk of CWD infection in deer with at least one Glycine (G) at amino acid 56 of the C1qC gene. While we documented numerous amino acid polymorphisms in C1q genes none appear to be strongly associated with CWD susceptibility