2,696 research outputs found

    Two-dimensional anyons and the temperature dependence of commutator anomalies

    Get PDF
    The temperature dependence of commutator anomalies is discussed on the explicit example of particular (anyonic) field operators in two dimensions. The correlation functions obtained show that effects of the non-zero temperature might manifest themselves not only globally but also locally.Comment: 11 pages, LaTe

    Formulation of the Spinor Field in the Presence of a Minimal Length Based on the Quesne-Tkachuk Algebra

    Full text link
    In 2006 Quesne and Tkachuk (J. Phys. A: Math. Gen. {\bf 39}, 10909, 2006) introduced a (D+1)-dimensional (β,β)(\beta,\beta')-two-parameter Lorentz-covariant deformed algebra which leads to a nonzero minimal length. In this work, the Lagrangian formulation of the spinor field in a (3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant deformed algebra is studied in the case where β=2β\beta'=2\beta up to first order over deformation parameter β\beta. It is shown that the modified Dirac equation which contains higher order derivative of the wave function describes two massive particles with different masses. We show that physically acceptable mass states can only exist for β<18m2c2\beta<\frac{1}{8m^{2}c^{2}}. Applying the condition β<18m2c2\beta<\frac{1}{8m^{2}c^{2}} to an electron, the upper bound for the isotropic minimal length becomes about 3×1013m3 \times 10^{-13}m. This value is near to the reduced Compton wavelength of the electron (λc=mec=3.86×1013m)(\lambda_c = \frac{\hbar}{m_{e}c} = 3.86\times 10^{-13} m) and is not incompatible with the results obtained for the minimal length in previous investigations.Comment: 11 pages, no figur

    Measuring measurement--disturbance relationships with weak values

    Full text link
    Using formal definitions for measurement precision {\epsilon} and disturbance (measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has shown that Heisenberg's claimed relation between these quantities is false in general. Here we show that the quantities introduced by Ozawa can be determined experimentally, using no prior knowledge of the measurement under investigation --- both quantities correspond to the root-mean-squared difference given by a weak-valued probability distribution. We propose a simple three-qubit experiment which would illustrate the failure of Heisenberg's measurement--disturbance relation, and the validity of an alternative relation proposed by Ozawa

    Electron-hole asymmetry is the key to superconductivity

    Full text link
    In a solid, transport of electricity can occur via negative electrons or via positive holes. In the normal state of superconducting materials experiments show that transport is usually dominated by dresseddressed positivepositive holehole carrierscarriers. Instead, in the superconducting state experiments show that the supercurrent is always carried by undressedundressed negativenegative electronelectron carrierscarriers. These experimental facts indicate that electron-hole asymmetry plays a fundamental role in superconductivity, as proposed by the theory of hole superconductivity.Comment: Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 2003; to be published in Int. J. Mod. Phys.

    Determining physical properties of the cell cortex

    Get PDF
    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse grained physical description of the cortex in terms of a two dimensional thin film of an active viscoelastic gel. To determine the Maxwell time, the hydrodynamic length and the ratio of active stress and per-area friction, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. We provide an accurate and robust means for measuring physical parameters of the actomyosin cortical layer.It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights in the active mechanics processes that govern tissue-scale morphogenesis.Comment: 17 pages, 4 figure

    Kinetic energy driven superconductivity, the origin of the Meissner effect, and the reductionist frontier

    Full text link
    Is superconductivity associated with a lowering or an increase of the kinetic energy of the charge carriers? Conventional BCS theory predicts that the kinetic energy of carriers increases in the transition from the normal to the superconducting state. However, substantial experimental evidence obtained in recent years indicates that in at least some superconductors the opposite occurs. Motivated in part by these experiments many novel mechanisms of superconductivity have recently been proposed where the transition to superconductivity is associated with a lowering of the kinetic energy of the carriers. However none of these proposed unconventional mechanisms explores the fundamental reason for kinetic energy lowering nor its wider implications. Here I propose that kinetic energy lowering is at the root of the Meissner effect, the most fundamental property of superconductors. The physics can be understood at the level of a single electron atom: kinetic energy lowering and enhanced diamagnetic susceptibility are intimately connected. According to the theory of hole superconductivity, superconductors expel negative charge from their interior driven by kinetic energy lowering and in the process expel any magnetic field lines present in their interior. Associated with this we predict the existence of a macroscopic electric field in the interior of superconductors and the existence of macroscopic quantum zero-point motion in the form of a spin current in the ground state of superconductors (spin Meissner effect). In turn, the understanding of the role of kinetic energy lowering in superconductivity suggests a new way to understand the fundamental origin of kinetic energy lowering in quantum mechanics quite generally

    (Never) Mind your p's and q's: Von Neumann versus Jordan on the Foundations of Quantum Theory

    Get PDF
    In two papers entitled "On a new foundation [Neue Begr\"undung] of quantum mechanics," Pascual Jordan (1927b,g) presented his version of what came to be known as the Dirac-Jordan statistical transformation theory. As an alternative that avoids the mathematical difficulties facing the approach of Jordan and Paul A. M. Dirac (1927), John von Neumann (1927a) developed the modern Hilbert space formalism of quantum mechanics. In this paper, we focus on Jordan and von Neumann. Central to the formalisms of both are expressions for conditional probabilities of finding some value for one quantity given the value of another. Beyond that Jordan and von Neumann had very different views about the appropriate formulation of problems in quantum mechanics. For Jordan, unable to let go of the analogy to classical mechanics, the solution of such problems required the identication of sets of canonically conjugate variables, i.e., p's and q's. For von Neumann, not constrained by the analogy to classical mechanics, it required only the identication of a maximal set of commuting operators with simultaneous eigenstates. He had no need for p's and q's. Jordan and von Neumann also stated the characteristic new rules for probabilities in quantum mechanics somewhat differently. Jordan (1927b) was the first to state those rules in full generality. Von Neumann (1927a) rephrased them and, in a subsequent paper (von Neumann, 1927b), sought to derive them from more basic considerations. In this paper we reconstruct the central arguments of these 1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these papers that bring out the gradual loosening of the ties between the new quantum formalism and classical mechanics.Comment: New version. The main difference with the old version is that the introduction has been rewritten. Sec. 1 (pp. 2-12) in the old version has been replaced by Secs. 1.1-1.4 (pp. 2-31) in the new version. The paper has been accepted for publication in European Physical Journal

    Boson stars from a gauge condensate

    Get PDF
    The boson star filled with two interacting scalar fields is investigated. The scalar fields can be considered as a gauge condensate formed by SU(3) gauge field quantized in a non-perturbative manner. The corresponding solution is regular everywhere, has a finite energy and can be considered as a quantum SU(3) version of the Bartnik - McKinnon particle-like solution.Comment: errors are corrected, one reference is adde

    Common Space of Spin and Spacetime

    Full text link
    Given Lorentz invariance in Minkowski spacetime, we investigate a common space of spin and spacetime. To obtain a finite spinor representation of the non-compact homogeneous Lorentz group including Lorentz boosts, we introduce an indefinite inner product space (IIPS) with a normalized positive probability. In this IIPS, the common momentum and common variable of a massive fermion turn out to be ``doubly strict plus-operators''. Due to this nice property, it is straightforward to show an uncertainty relation between fermion mass and proper time. Also in IIPS, the newly-defined Lagrangian operators are self-adjoint, and the fermion field equations are derivable from the Lagrangians. Finally, the nonlinear QED equations and Lagrangians are presented as an example.Comment: 17 pages, a reference corrected, final version published on Foundations of Physics Letters in June of 2005, as a personal tribute to Einstein and Dira

    Gauged System Mimicking the G\"{u}rsey Model

    Get PDF
    We comment on the changes in the constrained model studied earlier when constituent massless vector fields are introduced. The new model acts like a gauge-Higgs-Yukawa system, although its origin is different.Comment: 8 pages, RevTex4; published versio
    corecore