99 research outputs found

    Global Music Perspectives: Music Outside the Western Canon in Local Schools

    Full text link
    As a class, we are designing a research project for investigating how music teachers from counties in South-Central Pennsylvania use music from outside the Western canon (i.e. world music ). We are performing a qualitative study by interviewing k-12 music teachers from school districts in South-Central Pennsylvania. Teachers may choose to participate in a focus group interview with other teachers or in one-on-one interviews. The focus group interview will not exceed two hours and the one-on-one interviews will not exceed an hour. The interviews will be guided using a questionnaire (see attached), but the conversation may deviate from these questions at the discretion of the interviewer(s). We will transcribe these interviews to extract common thematic materials and relevant information. We will also compile a literature review of relevant peer-reviewed articles and use the data from said articles to expand upon our gathered information

    Mannose binding lectin is required for alphavirus-induced arthritis/myositis

    Get PDF
    Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3(-/-) mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.This work was supported by NIH/NIAMS R01 AR 047190 awarded to MTH

    Ross River virus envelope glycans contribute to disease through activation of the host complement system

    Get PDF
    Mannose binding lectin (MBL) generally plays a protective role during viral infection, yet MBL-mediated complement activation promotes Ross River virus (RRV)-induced inflammatory tissue destruction, contributing to arthritis and myositis. As MBL binds to carbohydrates, we hypothesized that N-linked glycans on the RRV envelope glycoproteins act as ligands for MBL. Using a panel of RRV mutants lacking the envelope N-linked glycans, we found that MBL deposition onto infected cells was dependent on the E2 glycans. Moreover, the glycan-deficient viruses exhibited reduced disease and tissue damage in a mouse model of RRV-induced myositis compared to wild-type RRV, despite similar viral load and inflammatory infiltrates within the skeletal muscle. Instead, the reduced disease induced by glycan-deficient viruses was linked to decreased MBL deposition and complement activation within inflamed tissues. These results demonstrate that the viral N-linked glycans promote MBL deposition and complement activation onto RRV-infected cells, contributing to the development of RRV-induced myositis

    Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    Get PDF
    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo . Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease

    Development of a broadly accessible Venezuelan equine encephalitis virus replicon particle vaccine platform

    Get PDF
    Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens.IMPORTANCE While VEE virus replicon particles provide a robust, established platform for antigen expression and vaccination, its utility has been limited by the requirement for high-containment-level facilities for production and packaging. In this work, we utilize an attenuated vaccine strain capable of use at lower biocontainment level but retaining the capacity of the wild-type replicon particle. Importantly, the new replicon platform provides equal protection for aged mice and following heterologous challenge, which distinguishes it from other attenuated replicon platforms. Together, the new system represents a highly portable, safe system for use in the context of disease emergence

    γδ T cells play a protective role in Chikungunya virus-induced disease

    Get PDF
    Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. Because CHIKV is initially introduced via the skin, where γδ T cells are prevalent, we evaluated the response of these cells to CHIKV infection. CHIKV infection led to a significant increase in γδ T cells in the infected foot and draining lymph node that was associated with the production of proinflammatory cytokines and chemokines in C57BL/6J mice. γδ T cell-/- mice demonstrated exacerbated CHIKV disease characterized by less weight gain and greater foot swelling than occurred in wild-type mice, as well as a transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, γδ T cell-/- mice had increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint compared to wild-type mice which was independent of differences in CHIKV replication. These results suggest that γδ T cells play a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage

    Gamma-delta T cells play a protective role in chikungunya virus-induced disease.

    Get PDF
    Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. As CHIKV is initially introduced into the skin where γδ T cells are prevalent, we evaluated their response to CHIKV infection. CHIKV infection led to a significant increase in γδ T cells in the infected foot and draining lymph node associated with the production of pro-inflammatory cytokines and chemokines in C57BL/6J mice. γδ T cell-/- mice demonstrated exacerbated CHIKV disease characterized by less weight gain and greater foot swelling compared to wild-type mice as well as a transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, γδ T cell-/- mice had increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint of versus wild-type mice which was independent of differences in CHIKV replication. These results suggest that γδ T cells play a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage. Recent epidemics including the 2004-2007 outbreak and the spread of CHIKV to naïve populations in the Caribbean, Central and South America with resultant cases imported into the U.S highlighted the capacity of CHIKV to cause explosive epidemics where the virus can spread to millions of people and rapidly move into new areas. These studies identify γδ T cells as being important to both recruitment of key inflammatory cell populations and dampening the tissue injury due to oxidative stress. Given the importance of these cells in the early response to CHIKV, this information may inform the development of CHIKV vaccines and therapeutics

    BeppoSAX Observations of GRB980425: Detection of the Prompt Event and Monitoring of the Error Box

    Get PDF
    We present BeppoSAX follow-up observations of GRB980425 obtained with the Narrow Field Instruments (NFI) in April, May, and November 1998. The first NFI observation has detected within the 8' radius error box of the GRB an X-ray source positionally consistent with the supernova 1998bw, which exploded within a day of GRB980425, and a fainter X-ray source, not consistent with the position of the supernova. The former source is detected in the following NFI pointings and exhibits a decline of a factor of two in six months. If it is associated with SN 1998bw, this is the first detection of X-ray emission from a Type I supernova above 2 keV. The latter source exhibits only marginally significant variability. The X-ray spectra and variability of the supernova are compared with thermal and non-thermal models of supernova high energy emission. Based on the BeppoSAX data, it is not possible to firmly establish which of the two detected sources is the GRB X-ray counterpart, although probability considerations favor the supernova

    Genomic Profiling of Collaborative Cross Founder Mice Infected with Respiratory Viruses Reveals Novel Transcripts and Infection-Related Strain-Specific Gene and Isoform Expression

    Get PDF
    Genetic variation between diverse mouse species is well-characterized, yet existing knowledge of the mouse transcriptome comes largely from one mouse strain (C57BL/6J). As such, it is unlikely to reflect the transcriptional complexity of the mouse species. Gene transcription is dynamic and condition-specific; therefore, to better understand the mouse transcriptional response to respiratory virus infection, we infected the eight founder strains of the Collaborative Cross with either influenza A virus or severe acute respiratory syndrome coronavirus and sequenced lung RNA samples at 2 and 4 days after infection. We found numerous instances of transcripts that were not present in the C57BL/6J reference annotation, indicating that a nontrivial proportion of the mouse genome is transcribed but poorly annotated. Of these novel transcripts, 2150 could be aligned to human or rat genomes, but not to existing mouse genomes, suggesting functionally conserved sequences not yet recorded in mouse genomes. We also found that respiratory virus infection induced differential expression of 4287 splicing junctions, resulting in strain-specific isoform expression. Of these, 59 were influenced by strain-specific mutations within 2 base pairs of key intron–exon boundaries, suggesting cis-regulated expression. Our results reveal the complexity of the transcriptional response to viral infection, previously undocumented genomic elements, and extensive diversity in the response across mouse strains. These findings identify hitherto unexplored transcriptional patterns and undocumented transcripts in genetically diverse mice. Host genetic variation drives the complexity and diversity of the host response by eliciting starkly different transcriptional profiles in response to a viral infection

    Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin

    Get PDF
    BACKGROUND: Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST), we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. METHODS: Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10) and rechallenge (day 17), test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. RESULTS: Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51) and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001) were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis) did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (κ = 0.83). CONCLUSION: The irritant properties and cutaneous sensitising potential of cylindrospermopsin indicate that these toxicological endpoints should be considered by public health advisors and reservoir managers when setting guidelines for recreational exposure to cyanobacteria
    • …
    corecore