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ABSTRACT

Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. Because
CHIKV is initially introduced via the skin, where �� T cells are prevalent, we evaluated the response of these cells to CHIKV in-
fection. CHIKV infection led to a significant increase in �� T cells in the infected foot and draining lymph node that was associ-
ated with the production of proinflammatory cytokines and chemokines in C57BL/6J mice. �� T cell�/� mice demonstrated ex-
acerbated CHIKV disease characterized by less weight gain and greater foot swelling than occurred in wild-type mice, as well as a
transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, �� T cell�/� mice had
increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint compared to wild-type mice which was
independent of differences in CHIKV replication. These results suggest that �� T cells play a protective role in limiting the
CHIKV-induced inflammatory response and subsequent tissue and joint damage.

IMPORTANCE

Recent epidemics, including the 2004 to 2007 outbreak and the spread of CHIKV to naive populations in the Caribbean and Cen-
tral and South America with resultant cases imported into the United States, have highlighted the capacity of CHIKV to cause
explosive epidemics where the virus can spread to millions of people and rapidly move into new areas. These studies identified
�� T cells as important to both recruitment of key inflammatory cell populations and dampening the tissue injury due to oxida-
tive stress. Given the importance of these cells in the early response to CHIKV, this information may inform the development of
CHIKV vaccines and therapeutics.

Chikungunya virus (CHIKV) is a mosquito-transmitted alpha-
virus belonging to the Togaviridae family and was first isolated

in Tanzania in 1952 (1–3). It is responsible for epidemics of debil-
itating rheumatic disease associated with inflammation and de-
struction of musculoskeletal tissues in humans (4). Beginning in
2004, CHIKV reemerged, causing millions of infections in coastal
Africa, islands of the Indian Ocean, and India (5–9). Infected vis-
itors to these areas of CHIKV epidemics returned to Europe, Aus-
tralia, the United Kingdom, Japan, Belgium, Canada, and the
United States (10–15), and importation of human cases to north-
ern Italy, New Caledonia, China, the French Riviera, and Saudi
Arabia produced autochthonous outbreaks resulting from infec-
tion of naive mosquito populations (16–20). In late 2013, the first
local transmission of CHIKV in the Americas was identified in
Caribbean countries and territories, indicating that mosquito
populations in these areas had become infected with the virus and
are competent to transmit it to humans (21–23). Since that time, a
total of approximately 1.2 million suspected and over 24,000 con-
firmed cases of CHIKV have been reported in 44 countries or
territories in the Caribbean or South America (24), including
hundreds of travelers returning to the United States, with subse-
quent localized transmission in Florida in 2014.

Analysis of the explosive 2004 –2007 epidemic suggests that
new disease manifestations may be associated with CHIKV that
increase cause for concern. During the epidemic, CHIKV infec-
tion resulted in increased morbidity as well as mortality in adults
(25, 26). Additionally, greater numbers of CHIKV-infected per-
sons developed the more severe forms of the disease, including

neurological complications and fulminant hepatitis, while mater-
nal-fetal transmission associated with neonatal encephalopathy
was also reported (25, 27–30). Of particular concern with this
outbreak was the threat of CHIKV introduction and spread into
new regions, in part through successful adaptation of the virus,
allowing it to infect not only the classical vector Aedes aegypti but
also the widely distributed mosquito vector Aedes albopictus (5,
31–35).

Symmetrical polyarthritis is the hallmark of CHIKV infection
and is responsible for the severe arthralgia and inflammation as-
sociated with infection (36, 37). In addition to rheumatic disease,
CHIKV infection is also associated with fever, headache, rigors,
photophobia, myalgia, and a petechial or maculopapular rash (38,
39). The acute phase of CHIKV infection typically lasts from days
to several weeks; however, multiple studies have reported chronic
fatigue and chronic joint pain for a significant time postinfection,
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with one study demonstrating persistent joint pain in roughly
79% of patients at 27.5 months postinfection, with 5% of those
infected with CHIKV meeting a modified version of the American
College of Rheumatology criteria for rheumatoid arthritis (14, 37,
40–45). In both human cases and mouse models, CHIKV-induced
immunopathology is implicated as the primary mediator of dam-
age and persistent pain (46–50). Support for the immune-medi-
ated pathogenesis of CHIKV comes from the observation that
inflammation continues well after viral replication has ceased
(51). Additionally, high levels of proinflammatory cytokines are
observed both in humans and in mouse models of CHIKV disease.
Finally, the contributions of immune mediators to pathology in
closely related alphavirus infections have been well described
(52–57).

The bulk of the work examining CHIKV-induced pathology
and viral clearance has been centered on the innate immune re-
sponse following infection (58–60). In particular the type I inter-
feron (IFN) pathway is critical for controlling viral replication and
pathogenesis during the early stages of CHIKV infection, though
this response does not completely ablate CHIKV replication or
disease (61–66). With respect to adaptive immunity, B cells and
antibodies are known to be important, as CHIKV RNA persists in
the serum of B cell-deficient mice for greater than a year and
passive transfer of CHIKV-immune serum to IFNAR�/� mice
protects against lethal infection (67). In human acute CHIKV in-
fection, CD8� T cells predominate in the early stages of the dis-
ease, with CD4� T cells mediating the adaptive response at later
times postinfection (60). Both CD4� and CD8� T cells have been
shown to infiltrate CHIKV-infected tissues in mouse models of
infection (66, 68). CD4� T cells were recently shown to contribute
to pathogenesis during CHIKV infection in mice independent of
changes in viral titer and IFN-� production (69). CD4�/� mice
had lower levels of anti-CHIKV antibody with reduced neutraliz-
ing activity, although this did not affect their ability to control
CHIKV infection (67). Regulatory T cells are also important in the
pathogenesis of CHIKV, as interleukin-2 (IL-2) antibody-medi-
ated expansion of regulatory T cells results in inhibition of
CHIKV-specific CD4� effector cells and abolishes joint pathology
in mice (70). While these studies provided evidence that T cells
contribute to CHIKV protection and pathogenesis, characteriza-
tion of the different types of T cells responsible and the mecha-
nism by which these cells contribute to CHIKV infection requires
further study.

Since arboviruses are delivered to the human host subcutane-
ously by feeding mosquitos, it stands to reason that resident skin
immune cells would serve as an important first defense against
these infections. Immune cell populations within the skin are
comprised of a heterogeneous population, including numerous
types of dendritic cells (DCs), monocytes, and lymphocytes, with
�� T cells being the most abundant resident T lymphocytes in the
skin and mucosal surfaces (71). �� T cells lack major histocom-
patibility complex (MHC) restriction such that they react to anti-
gens without the need for conventional processing and have been
shown to be key players in cytotoxicity, cytokine secretion, and
enhancement of DC maturation and function (72, 73). Notably,
increased inflammation and exaggerated tissue damage observed
in �� T cell-deficient mice infected with various pathogens iden-
tified a requirement for �� T cells in the resolution of potentially
damaging immune responses and prevention of immune-medi-
ated damage (74–79). �� T lymphocytes have been studied in

several different arbovirus infections, where they have been shown
to contribute to both the innate and adaptive immune response
(80–84).

To determine if �� T cells play a role in CHIKV infection,
wild-type (wt) C57BL/6J mice and mice deficient for the �� T cell
receptor (�� T�/�) were infected and monitored for disease sever-
ity, viral replication, and joint and tissue pathology. Our results
indicated that in the absence of �� T cells, monocytic inflamma-
tory cells and inflammatory cytokines increase at the site of
CHIKV infection, and disease signs and tissue damage are exacer-
bated.

MATERIALS AND METHODS
Virus. The virus used in this study was produced from electroporation of
baby hamster kidney (BHK-21) cells with in vitro-transcribed RNA
(mMESSAGE mMACHINE SP6 transcription kit; Life Technologies) de-
rived from plasmid pMH56.2, which is an infectious clone that carries the
full-length genome of CHIKV isolate SL15649. pMH56.2 was produced
by sequential ligation of commercially synthesized genome fragments
(BioBasic) into a modified pSinRep5 plasmid (Invitrogen). Detailed se-
quences and cloning details are available from the authors upon request.
The clinical isolate SL15649 has been previously described (68). All studies
were performed in certified biological safety level 3 facilities in biological
safety cabinets with protocols approved by the University of North Caro-
lina at Chapel Hill Department of Environment, Health and Safety and
the Institutional Biosafety Committee.

Mice. C57BL/6J and �� T cell�/� mice on a C57BL/6J genetic back-
ground were obtained from the Jackson Laboratory. All mice were bred
in-house as homozygous knockouts. Twenty-four-day-old mice were in-
oculated in the left rear footpad with 100 PFU of CHIKV in sterile phos-
phate-buffered saline (PBS) in a 10-�l volume. Control animals were
inoculated with 10 �l of sterile PBS alone. Mice were weighed daily and
monitored for clinical signs of disease, including swelling of the ipsilateral
foot by using calipers. At indicated times postinfection, mice were sacri-
ficed by isoflurane (Attane; Minrad, Inc.) overdose. Animal husbandry
and experiments were performed in accordance with the University of
North Carolina at Chapel Hill Institutional Animal Care and Use Com-
mittee guidelines and approval.

Virus titers. At various times postinfection, mice were sacrificed and
perfused by intracardial injection with 1� PBS. Blood was collected prior
to perfusion, removed to serum separator tubes, and centrifuged for 5 min
at full speed to collect serum. Tissues were dissected, weighed, homoge-
nized in PBS, and stored at �80°C. The amount of infectious CHIKV
present was determined by standard plaque assay on Vero cells (ATCC
CCL-81).

Histological analysis. Mice were sacrificed and perfused by intracar-
dial injection with 4% paraformaldehyde (PFA), pH 7.3. Hind limb tis-
sues were embedded in paraffin, and 5-�m sections were prepared. Tis-
sues were stained with hematoxylin and eosin (H&E), and tissue sections
were evaluated for the extent and severity of inflammation and musculo-
skeletal tissue damage. Photomicrographs were obtained using an Olym-
pus BX43 model microscope with CellSens software.

Immunohistochemistry. Tissues were fixed in 4% paraformaldehyde,
embedded in paraffin, sectioned at 5 �m, and affixed to positively charged
glass slides. Slides were deparaffinized with a graded series of xylene and
ethanol washes followed by microwaving for 20 min in 10 mM sodium
citrate buffer (pH 6) for antigen retrieval. Specimens were blocked in 10%
donkey serum (Jackson ImmunoResearch) and subsequently stained with
antibody specific for nitrotyrosine (Millipore). Staining was detected with
the use of biotinylated secondary antibodies followed by streptavidin–
DyLight-594 conjugate (Jackson ImmunoResearch). Stained sections
were mounted in ProLong Antifade Reagent Gold with 4=,6-diamidino-
2-phenylindole (Invitrogen) and viewed with an Olympus BX60 fluores-
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cence microscope; images were collected with the iVision software v.4.0.0
(BioVision Technologies).

Flow cytometry. Inoculated mice were sacrificed and perfused with
1� PBS. The skin was removed from the hind limbs and the leg was
dissected just above the patella, ensuring that the bone marrow was not
exposed. Following gentle separation of tissues from bone with a scalpel,
the entire tissue sample was incubated for 1 h with vigorous shaking at
37°C in digestion buffer (RPMI 1640, 10% fetal bovine serum, 15 mM
HEPES, 2.5 mg/ml collagenase A [Roche], 1.7 mg/ml DNase I [Sigma]).
Following digestion, cells were passed through a 40-�m cell strainer and
washed in wash buffer, and total viable cells were determined by trypan
blue exclusion. Cells were stained in fluorescence-activated cell-sorting
staining buffer (1� Hanks balanced salt solution, 1% fetal bovine serum,
0.01% sodium azide) with the following antibodies from eBioscience:
fluorescein isothiocyanate (FITC)–F4/80, phycoerythrin cyanine (PE)-
NK1.1, PE-Texas Red (PETR)–CD11c, peridinin chlorophyll (PerCP)-
Ly6C, PE-cyanine 7 (Cy7)–lymphocyte common antigen (LCA), eF450-
CD11b, allophycocyanin (APC)–MHC-IIc, APC-eF780 –Ly6G, PE–�� T
cell receptor (TCR), PETR-CD4, and FITC-CD3. Cells were fixed in 4%
paraformaldehyde overnight before being analyzed on a cyan cytometer
(Dako Cytomation) using the Summit software (Beckman-Coulter).

Quantitative real-time PCR. Real-time PCR was performed using
ABI Prism 7300 sequence detection system software (v14.0). For absolute
quantification of viral RNA, a sequence-tagged CHIKV-specific reverse
transcription (RT) primer in the reverse transcription reaction mixture,
CHIKV sequence-specific forward reverse primers, and an internal Taq-
Man probe were used as previously described (50). Standard curves were
derived from 15-fold dilutions of the CHIKV infectious clone plasmid,
which contained nonstructural CHIKV coding sequences. Real-time PCR
was run using ABI Prism 7300 sequence detection system software
(v14.0).

Quantitative protein analysis. The treated ankle and foot from mock-
or CHIKV-infected mice were harvested at the designated times and ho-
mogenized in sterile PBS. From the homogenates, protein levels of cyto-
kines/chemokines were evaluated using multiplex bead array assays. All
the antibodies and cytokine standards were purchased as antibody pairs
from R&D Systems (Minneapolis, MN) or Peprotech (Rocky Hill, NJ).
Individual Luminex bead sets (Luminex, Riverside, CA) were coupled to
cytokine-specific capture antibodies according to the manufacturer’s rec-
ommendations. Biotinylated antibodies were used at twice the concentra-
tions recommended for a classical enzyme-linked immunosorbent assay
(ELISA) according to the manufacturer. All assay procedures were per-
formed in assay buffer containing PBS supplemented with 1% normal
mouse serum (Gibco BRL), 1% normal goat serum (Gibco BRL), and 20
mM Tris-HCl (pH 7.4). The assays were run using 1,200 beads per set of
each of the cytokines measured per well in a total volume of 50 �l. The
plates were read on a Luminex MagPIX platform. For each bead set, �50
beads were collected. The median fluorescence intensities of the following
cytokines/chemokines were recorded for each bead and used for analysis
with the Milliplex software using a 5P regression algorithm: granulocyte-
monocyte colony-stimulating factor (GM-CSF), IFN-�, IL-1	, IL-2, IL-4,
IL-6, IL-10, IL-12p70, IL-15, IL-17
, IL-22, CXCL2/macrophage inflam-
matory protein 2
 (MIP-2
), CXCL10/IP-10, CXCL1/KC, CXCL5/LIX,
CXCL9/MIG, CXCL12/SDF1
, CXCL20/MIP-3
, CCL-2/monocyte che-
moattractant protein 1 (MCP-1), CCL3/MIP-1
, CCL-4/MIP-1	, CCL5/
RANTES, CCL7/MCP-3, and tumor necrosis factor alpha (TNF-
).

Statistical analyses. All statistical analyses were performed within R
(www.r-project.org). Data were transformed to fit normality (transfor-
mations are indicated in the descriptions of specific results) and analyzed
within an analysis of variance (ANOVA) framework. Specifically, we used
two-way ANOVA to examine the role of time postinfection and of differ-
ent host genetics on various responses to infection. Within assay type, we
utilized Bonferroni corrections to maintain stringency.

RESULTS
CHIKV infection increases activated �� T cells at the site of in-
fection and within the draining lymph nodes of C57B6/J mice.
Although the contributions of 
	 T cells to CHIKV clearance and
pathogenesis have been examined (66, 68, 69, 85), to date no ex-
periments have aimed at examining potential roles for �� T cells in
the disease process. To assess whether CHIKV infection of wild-
type mice induced a �� T cell response, infected feet and draining
lymph nodes (DLNs) were harvested, and single-cell suspensions
were assayed by flow cytometry. As shown in Fig. 1A, LCA� CD3�

�� TCR� T cells significantly increased in number over day 0
levels by 3 to 7 days postinfection (dpi) in both the ipsilateral
foot/ankle and DLNs following CHIKV infection. In addition to
increased numbers, the proportion of all CD3� �� TCR� T cells
increased in both the DLNs and ipsilateral foot throughout the
course of infection, with the percentage of CD3� �� TCR� T cells
peaking in the DLNs at 3 to 5 dpi and in the infected foot at 5 dpi
(Fig. 1B).

This finding that �� T cells rapidly accumulate at the site of
infection and within the draining lymph nodes of CHIKV-in-
fected C57BL/6J mice suggests that these cells are early responders
to CHIKV infection in the mice and may affect the outcome of
infection.

Mice lacking �� T cells develop more severe CHIKV-induced
disease than wild-type animals. Previous studies demonstrated
that C57BL/6J mice infected with a clinical isolate of CHIKV de-
veloped disease characterized by decreased weight gain and ede-
ma/swelling of the inoculated foot and that these disease signs
correlated with inflammation and damage of infected tissues (59,

FIG 1 Numbers and proportions of �� T cells following CHIKV infection.
C57BL/6J mice were infected in the left footpad with 100 PFU CHIKV, and
tissues were harvested and processed for flow cytometry analysis. (A) Numbers
of �� T cells identified in both the ipsilateral foot (Œ) and draining lymph node
(�) at the times indicated postinfection. (B) Proportions of �� T cells in the
same tissues. *, P � 0.05; #, P � 0.01 (compared to day 0 values for each tissue,
using a two-tailed t test).
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68). We directly assessed the role of �� T cells in the pathogenesis
of CHIKV infection by infecting 24-day-old mice deficient for the
�� TCR and wt mice with 100 PFU CHIKV in the left rear footpad.
Mice were monitored daily for weight gain and swelling in the
ipsilateral foot, measured using calipers. Clinically, CHIKV infec-
tion was more severe in �� T�/� mice, evidenced by both their
failure to gain weight at the same rate as infected wt mice (Fig. 2A)
and more pronounced ipsilateral hind limb swelling measured at 5
to 7 dpi (Fig. 2B). These clinical disease differences correlated with
the time of maximum �� T cell presence at the site of infection,
further supporting the idea that this T cell subset is a major player
in the disease process and/or immune response to CHIKV infec-
tion.

CHIKV infection induces greater inflammatory tissue dam-
age in �� T�/� mice than in wt mice. Footpad inoculation of
C57BL/6J mice with CHIKV results in inflammation and muscu-
loskeletal pathology, with peak severity from 7 to 10 dpi (68). In
these studies, H&E staining was used to analyze inflammation and
tissue damage following CHIKV infection of wt and �� T�/�

mice. Mock-infected feet displayed no significant histopathologi-
cal changes (Fig. 3A and D). Both CHIKV-infected C57BL/6J (Fig.
3H and K) and �� T�/� (Fig. 3I and L) joint tissues displayed
variable histopathological changes compared to mock-infected
tissues (Fig. 3G and J), but no noteworthy histopathologic differ-
ences were observed between wild-type and �� T�/� mice. In
either strain, following CHIKV infection, the synovium was ex-
panded to a thickness of 2 to 4 cells by hypertrophied (reactive)
synovial cells and infiltrating inflammatory cells. Perisynovial tis-
sue appeared variably expanded by edema and mixed inflamma-
tion. Joint spaces variably contained scattered sloughed cells and

infiltrating mixed inflammatory cells. In contrast to synovial
joints, CHIKV-induced myositis within the foot was more severe
in �� T�/� mice than in wt C57BL/6 mice. CHIKV infection of
wild-type mice resulted in abundant inflammatory cells replacing
nearly all pedal myocytes which had been lost to necrosis (Fig. 3B
and E). Myocyte loss and inflammation were even more severe in
CHIKV-infected �� T�/� mice, with complete replacement of
myocytes by inflammation and associated tendons remaining
only partially intact (Fig. 3C and F). Based on a lack of remaining
myocytes in the �� T�/� mice, it appears that the absence of �� T
cells increased tissue damage in the CHIKV-infected foot by 7 dpi.
To qualitatively assess the degree of tissue damage at the site of
CHIKV infection and replication, immunofluorescence was per-
formed on sections from mock- and CHIKV-infected mice to de-
tect nitrotyrosine (NT), a well-established marker of protein dam-
age caused by oxidative stress. Nitrotyrosine is a stable end
product of peroxynitrite oxidation and is a marker for inflamma-
tion and NO-dependent damage in vivo (86, 87). The presence of
nitrotyrosine has been detected in various inflammatory pro-
cesses, including arthritis in humans (88) and rodents (89). As
shown in Fig. 4, compared to mock-infected mice (Fig. 4A and D),
NT was increased at sites of inflammation in the ipsilateral foot of
both C57BL/6J (Fig. 4B and E) and �� T�/� mice (Fig. 4C and F).
However, the presence of NT staining was enhanced in the in-
fected feet of CHIKV-infected �� T�/� mice compared to feet of
wt animals. These data taken together with the clinical data and
histological evidence of increased inflammation suggest that �� T
cells have a role in limiting inflammatory cell-induced tissue dam-
age during CHIKV infection.

�� TCR deficiency does not affect viral replication in vivo.
To determine if the increased severity of disease in �� T�/� mice
correlated with differences in viral titers, infectious virus levels
were quantified by standard plaque assay. Serum samples and ipsi-
and contralateral foot/ankle tissues were harvested from wt or ��
T�/� mice at 24-h intervals following infection with 100 PFU
CHIKV. Tissues were homogenized in PBS and assayed on Vero
cell monolayers. CHIKV replicated in the serum (Fig. 5A) and the
ipsilateral foot/ankle (Fig. 5B) with no titer differences observed
between C57BL/6J and �� T�/� mice. Further, no difference in
titer was observed in contralateral feet (data not shown). As con-
firmation, we ran CHIKV-specific real-time PCR to assess viral
RNA copies, and we saw no difference in the amount of CHIKV
RNA in the ipsilateral foot/ankle at 1 to 7 dpi (Fig. 5C). These
results demonstrate that the increased disease and damage associ-
ated with CHIKV infection in �� T�/� mice are not due to in-
creased viral replication, spread, or the inability to clear virus.

�� T cell deficiency increases key populations of inflamma-
tory cells in infected tissues. Based on the finding that �� T�/�

mice have increased inflammation and damage within infected
tissues despite equivalent viral titers, it was of interest to assess the
composition of the inflammatory cell infiltrates. To this end, leu-
kocytes were isolated from the ipsilateral foot/ankle tissues at 5
and 7 days after inoculation with 100 PFU in CHIKV into wt and
�� T�/� mice. At 5 dpi, the proportion of total monocytes (LCA�

CD11b� CDllc-Gr1�), inflammatory Ly6C� monocytes, and reg-
ulatory Ly6C� monocytes were all significantly increased in the ��
T�/� mice (Fig. 6A to C). Similar increases were not seen until day
7 in the wt animals. Given that monocytes/macrophages have
been shown to contribute to CHIKV-induced inflammatory pa-
thology (66), the finding that these monocyte populations were

FIG 2 Mice lacking �� T cells develop more severe CHIKV-induced clinical
signs of disease than do wt C57BL/6J mice. Wild-type C57BL/6J (�), and ��
T�/� (Œ) mice were infected with 100 PFU of CHIKV or mock infected (�)
and monitored at 24-h intervals for signs of disease, including weight gain (A)
and swelling of the ipsilateral foot, measured using calipers (B). Results are
representative of four duplicate experiments (n � 5). Statistical significance
was determined by a two-tailed t test: *, P � 0.05 (comparing C57BL/6J to
��T�/� CHIKV-infected animals).

Long et al.

436 jvi.asm.org January 2016 Volume 90 Number 1Journal of Virology

http://jvi.asm.org


increased in the �� T�/� but not wt mice at early times in the
disease process suggests that �� T cells may decrease early mono-
cyte influx and help limit tissue damage caused by these cells.

Lack of �� T cells alters the levels of key mediators of inflam-
mation at sites of CHIKV infection. Based on histological and
flow cytometry data indicating increased monocyte populations
in the feet/ankles of �� T cell-deficient versus wt mice following
CHIKV infection, we investigated the impact of �� T cell defi-
ciency on production of various inflammatory cytokines and
chemokines following CHIKV infection by using a multiplex
ELISA for 24 unique cytokines and chemokines. C57BL/6J and ��
T�/� mice were infected, and foot/ankle tissues were harvested at
5 and 7 dpi. No differences in the levels of cytokines/chemokines
were observed in mock-infected C57BL/6J or mock-infected ��
T�/� animals at any time postinfection (data not shown). Chemo-
kine/cytokine responses could be grouped into three categories: a

group in which levels were unchanged between mock- and
CHIKV-infected animals at the time points analyzed, a group in
which CHIKV infection led to increased expression but with no
differences between the two mouse strains, and a third category in
which wild-type and �� T�/� mice exhibited significant differ-
ences in expression following CHIKV infection. In the first group,
IL-1	, IL-4, IL-15, IL-17
, IL-22, and GM-CSF showed no detect-
able induction over mock-infected animals at the time points
tested in wild-type or �� T�/� mice (data not shown). Within the
second group, comprising IL-6, TNF-
, IL-10, IL12p70, and
CXCL5/LIX, all showed induction following CHIKV infection,
but no differences in expression were detected between the two
mouse strains (data not shown). The last group was comprised of
chemokines which showed enhanced expression in �� T�/� com-
pared to wild-type mice at day 7 postinfection: CCL2/MCP1,
CCL4/MIP1	, CCL7/MCP3, CXCL2/MIP2, and CXCL9/MIG

FIG 3 Inflammatory cell infiltrate increases in CHIKV-infected tissues in the absence of �� T cells. Twenty-four-day-old C57BL/6J or �� T�/� mice (n � 5) were
inoculated with diluent only (mock) or 100 PFU of CHIKV in the left rear footpad. At 7 dpi, mice were sacrificed and perfused by intracardial injection with 4%
paraformaldehyde. Tissue sections of the ipsilateral foot (A to F) or ankle joint (G to L) were stained with H&E to determine the degree of inflammation and tissue
damage at the various sites. M, muscle tissue; #, area of complete myocyte loss with replacement by inflammation; T, tendon; P, periarticular tissue; J, joint space;
arrows, synovial lining. Photomicrographs were taken at 200� (A, B, C, G, H, and I) and 400� magnification (D, E, F, J, K, and L).
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(Fig. 7A). The expression of IL-2 and IFN-�, two key cytokines
associated with T cell activation and function, were also differen-
tially expressed in wild-type versus �� T�/� mice (Fig. 7B), indi-
cating that the absence of �� T cells leads to altered cytokine/
chemokine expression in response to CHIKV infection.

DISCUSSION

Chikungunya virus infection in both humans and mouse mod-
els is characterized by inflammatory responses and histopa-
thology that implicates immune-mediated pathology and
modulation as drivers of CHIKV-induce disease (46–48, 50, 90,
91). Although some host immune pathways have been impli-
cated in the recognition of CHIKV and subsequent induction
of protective and pathogenic responses (59, 62, 67, 69, 82, 92–
94), the precise mediators and mechanisms of CHIKV patho-
genesis are still relatively poorly understood. Given the preva-
lence of �� T cells in the skin, the primary site of CHIKV
infection, and evidence that this T cell subset plays a role in the
pathogenesis of other arboviruses (95–98), we tested whether
�� T cells played any role in the pathogenesis of CHIKV-in-
duced disease. These studies demonstrated that CHIKV infec-
tion leads to significant increases in the prevalence of �� T cells
in both the foot and draining popliteal lymph node and that the
absence of these cells leads to enhanced clinical signs of disease
as well as CHIKV-induced histopathologic changes. Regula-
tion of the host response to CHIKV by �� T cells, evidenced by
altered inflammatory cytokine expression and increased
monocyte populations present at the site of infection, suggests
that targeting of the inflammatory pathways that this T cell
subset modulates may have therapeutic benefit in the treat-
ment of CHIKV-induced and other alphavirus-induced in-
flammatory diseases.

An important role for �� T cells is the production of proin-
flammatory cytokines and chemokines that bias the inflammatory

milieu toward a Th1-like environment as a response to infection
or host cell dysregulation (99–101). In response to various bacte-
rial and viral infections, �� T cells can rapidly produce cytokines,
such as IFN-�, TNF-
, and IL-17 (82, 102–105). However, mech-
anisms by which these pathogens elicit cytokine responses in �� T
cells are poorly understood. West Nile virus replication in �� T
cells induces proinflammatory cytokines, including IFN-� and
TNF-
, as well as IL-17 and transforming growth factor 	 (80, 96);
following West Nile virus infection of mice, �� T cells expanded
quickly and produced significant amounts of IFN-� (82). While
the impact of IFN-� on the pathogenesis of CHIKV disease is
somewhat controversial, with one study group finding that IFN-�
limited viral replication but not joint swelling (69) while another
group found that IFN-� promotes virus-induced swelling (85),
our finding that mice lacking �� T cells had increased IFN-� pro-
duction (Fig. 7B) suggests that it will be important to further an-
alyze IFN-�’s role in the context of CHIKV infection.

In addition to cytokine production, �� T cells have been de-
scribed as a bridge between the innate and acquired immune re-
sponses by providing for the early and rapid movement and func-
tions of key effector cells, such as neutrophils, macrophages, and
NK cells, to the site of infection (74–76, 106, 107) and then down-
regulating the immune response after the danger has passed, to
minimize potential immune-mediated injury (31, 72, 73, 96, 97).
Monocytes have been shown to play a pathogenic role during
CHIKV infection (66), and therefore the finding that monocyte
numbers were increased in the foot/ankle of �� T�/� mice sug-
gests that �� T cells may limit monocytic influx at day 5 and
thereby decreasing the damage these cells cause within muscle
tissue of the foot (Fig. 3 and 4).

In summary, these results suggest that �� T cells may play a
major role in regulating inflammatory responses within joint-as-
sociated tissues during the acute stages of CHIKV disease and that
this occurs independently of changes in viral replication. These

FIG 4 Inflammatory cell infiltrate is associated with increased tissue damage in CHIKV-infected tissues in the absence of �� T cells. Twenty-four-day-old
C57BL/6J or �� T�/� mice (n � 5) were inoculated with diluent only (mock) or 100 PFU of CHIKV in the left rear footpad. At 7 dpi, mice were sacrificed and
perfused by intracardial injection with 4% paraformaldehyde. Tissue sections of the ipsilateral ankle joint and footpad were stained with H&E (A to C), and
immunofluorescence was done to detect nitrotyrosine within sites of inflammation in the ipsilateral foot (D to F). Panels A to C are representative H&E images
of the respective tissues labeled in panels D to F.
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results suggest that further investigation of the role of �� T cells in
CHIKV pathogenesis may provide novel insights into how the
host response modulates CHIKV-induced disease and lead to the
identification of pathways which may be exploited for therapeutic
or prophylactic therapies.

FIG 5 Absence of �� T cells does not affect viral replication or clearance during
acute CHIKV infection. (A and B) Twenty-four-day-old C57BL/6J (black bars)
and �� T�/� (white bars) mice were infected with 100 PFU CHIKV in the left rear
footpad. Serum (A) and ipsilateral foot/ankle tissues (B) were harvested at the
indicated times postinfection. Ankle/foot tissues were homogenized in PBS, and
all samples were assayed on Vero cell monolayers in a standard plaque assay. (C)
Total RNA was extracted from foot/ankle tissues of CHIKV- or mock-infected
C57BL/6J and �� T�/� mice by using the TRIzol RNA extraction protocol fol-
lowed by reverse transcription using the SuperScript III reverse transcriptase sys-
tem. CHIKV-specific real-time PCR was performed. Data represent mean viral
titers and standard deviations and are representative of 3 independent experi-
ments. Dashed lines indicate the limit of detection for each assay.

FIG 6 Absence of �� T cells increases monocyte recruitment to the site of CHIKV infection at 5 dpi. Total cells were isolated from the foot/ankle tissues of
C57BL/6J (�) (n � 6) and �� T�/� mice (�) (n � 3) at 7 or 10 days postinfection. Viable cells were quantified by flow cytometry using the cell surface markers
described in the text to determine the proportion of all LCA� cells that were CD11b� CD11c� Gr1� monocytes (A) and the proportions of monocytes that were
Ly6C� (B) or Ly6C� (C). *, P � 0.05; #, P � 0.01 by ANOVA.

FIG 7 Absence of �� T cells alters CHIKV-induced cytokine expression 7 days
following infection. The ankle and foot from CHIKV-infected C57BL/6J
(black bars) or �� T�/� (white bars) mice or mock-infected mice (gray bars)
were harvested at 7 dpi and homogenized in sterile PBS. From the homoge-
nates, cytokine concentrations were measured by multiplex ELISA using the
Luminex MAGPIX platform. The average expression for each chemokine (A)
and T cell-associated cytokine (B) are shown. Data represent mean amounts of
total protein detected (in picograms per milliliter) (n � 5) and the error bars
indicate standard deviations. ND, not detected. These data are representative
of two independent experiments. Values for mock-treated C57BL/6J and ��
T�/� mice were not different, and the data shown are the averages of all mock
animals of both genotypes. Statistical significance: *, P � 0.05; #, P � 0.01
(determined by Student’s t test for C57BL/6J versus �� T�/� animals).
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