95 research outputs found

    Immunotherapy in Gynecologic Cancers

    Get PDF
    During the last years, significant progress in the understanding of signaling pathways of immune cells has revive the field of immune therapy for cancer. In this chapter, we explain the recent immunotherapy-based strategies for the treatment of gynecological cancers including cervical cancer, endometrial cancer, ovarian cancer, and vulvar cancer. This work will mainly focus on emerging clinical data on immune checkpoint inhibitors. But also data on adoptive T cell therapies and vaccines will be presented. It is anticipated that in future biomarker-guided randomized trials will provide better approaches in terms of response and resistance to immune therapy. The use of combination therapy for gynecological cancer might be one possible approach to overcome resistance

    The special role of ultrasound for screening, staging and surveillance of malignant ovarian tumors: distinction from other methods of diagnostic imaging

    Get PDF
    Ovarian cancer is the most aggressive gynecologic malignancy, with a 5-year survival rate ranging around 40%. A crucial factor influencing the prognosis is early detection of a suspicious mass and referral to a gynecologic oncology center for further diagnosis, staging and debulking surgery. Here, we present the different imaging methods ultrasound (US), magnetic resonance imaging, computer tomography (CT) and 18F-fluoro-deoxyglucose positron emission tomography (PET)/CT that are used for the characterization, diagnosis, staging and surveillance of ovarian cancer. In this review, we focus on US and discuss in detail the advantages and the limitations, as well as the appropriate indications for each of the individual imaging techniques

    The special role of ultrasound for screening, staging and surveillance of malignant ovarian tumors: distinction from other methods of diagnostic imaging

    Get PDF
    Ovarian cancer is the most aggressive gynecologic malignancy, with a 5-year survival rate ranging around 40%. A crucial factor influencing the prognosis is early detection of a suspicious mass and referral to a gynecologic oncology center for further diagnosis, staging and debulking surgery. Here, we present the different imaging methods ultrasound (US), magnetic resonance imaging, computer tomography (CT) and 18F-fluoro-deoxyglucose positron emission tomography (PET)/CT that are used for the characterization, diagnosis, staging and surveillance of ovarian cancer. In this review, we focus on US and discuss in detail the advantages and the limitations, as well as the appropriate indications for each of the individual imaging techniques

    Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies

    Get PDF
    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selectio

    Impact of breast cancer family history on tumor detection and tumor size in women newly-diagnosed with invasive breast cancer

    Get PDF
    This study evaluated the impact of family history (FH) on tumor detection, the patient's age and tumor size at diagnosis in breast cancer (BC). Furthermore, we investigated whether the impact of FH on these features was dependent on degree of relationship, number of relatives with a BC history, or the age of the affected relative at the time that her BC was diagnosed. Out of the entire cohort (n=1,037), 244 patients (23.5%) had a positive FH; 159 (15.3%) had first-degree relatives affected with BC and 85 patients (8.2%) had second-degree affected relatives. Compared to women who had no BC-affected relatives, the tumors of women who had positive FH were more often found by radiological breast examination (RBE: 31.7%/27.2%, p=0.008), and they were smaller (general tumor size: 21.8mm/26.4mm, p=0.003; size of tumors found by breast self-examination (BSE): 26.1mm/30.6mm, p=0.041). However, this positive effect of increased use of BC screening and smaller tumor sizes was only observed in patients whose first-degree relatives were affected (comparison with second-degree affected relatives: RBE: 43.8%/24.7%; odds ratio 2.38, p=0.007; general tumor size: 19.3mm/26.3mm; mean difference (MD) −6.9, p=0.025; tumor size found by BSE: 22.5mm/31.0mm; MD −8.5, p=0.044). When more second-degree relatives or older relatives were diagnosed with BC, the tumors of these patients were similarly often detected by RBE (relationship: 24.7%/27.2%, p=0.641; age: 33.7%/27.2%, p=0.177) and had similar tumor sizes (general size: 26.3mm/26.4mm, p=0.960; BSE: 31.0mm/30.6mm, p=0.902) as those of women without a FH. Women with a positive FH generally use mammography screening more often and perceive changes in the breast earlier than women without such history. The increased awareness of BC risk decreases if the relationship is more distant

    The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity

    Get PDF
    In addition to direct tumor cell cytotoxicity, chemotherapy can mediate tumor reduction through immune modulation of the tumor microenvironment to promote anti-tumor immunity. Mature dendritic cells (DCs) play key roles in priming robust immune responses in tumor-bearing hosts. Here, we screened a panel of 21 anticancer agents with defined molecular targets for their ability to induce direct maturation of DCs. We identified ansamitocin P3, a microtubule-depolymerizing agent, as a potent inducer of phenotypic and functional maturation of DCs. Exposure of both murine spleen-derived and human monocyte-derived DCs to ansamitocin P3 triggered up-regulation of maturation markers and production of pro-inflammatory cytokines, resulting in an enhanced T cell stimulatory capacity. Local administration of ansamitocin P3 induced maturation of skin Langerhans cells in vivo and promoted antigen uptake and extensive homing of tumor-resident DCs to tumor-draining lymph nodes. When used as an adjuvant in a specific vaccination approach, ansamitocin P3 dramatically increased activation of antigen-specific T cells. Finally, we demonstrate that ansamitocin P3, due to its immunomodulatory properties, acts in synergy with antibody-mediated blockade of the T cell inhibitory receptors PD-1 and CTLA-4. The combination treatment was most effective and induced durable growth inhibition of established tumors. Mechanistically, we observed a reduced regulatory T cell frequency and improved T cell effector function at the tumor site. Taken together, our study unravels an immune-based anti-tumor mechanism exploited by microtubule-depolymerizing agents, including ansamitocin P3, and paves the way for future clinical trials combining this class of agents with immunotherapy

    MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies

    Full text link
    Cancer patients with advanced disease are characterized by intrinsic challenges in predicting drug response patterns, often leading to ineffective treatment. Current clinical practice for treatment decision-making is commonly based on primary or secondary tumour biopsies, yet when disease progression accelerates, tissue biopsies are not performed on a regular basis. It is in this context that liquid biopsies may offer a unique window to uncover key vulnerabilities, providing valuable information about previously underappreciated treatment opportunities. Here, we present MyCTC chip, a novel microfluidic device enabling the isolation, culture and drug susceptibility testing of cancer cells derived from liquid biopsies. Cancer cell capture is achieved through a label-free, antigen-agnostic enrichment method, and it is followed by cultivation in dedicated conditions, allowing on-chip expansion of captured cells. Upon growth, cancer cells are then transferred to drug screen chambers located within the same device, where multiple compounds can be tested simultaneously. We demonstrate MyCTC chip performance by means of spike-in experiments with patient-derived breast circulating tumour cells, enabling >95% capture rates, as well as prospective processing of blood from breast cancer patients and ascites fluid from patients with ovarian, tubal and endometrial cancer, where sensitivity to specific chemotherapeutic agents was identified. Together, we provide evidence that MyCTC chip may be used to identify personalized drug response patterns in patients with advanced metastatic disease and with limited treatment opportunities

    Cancer Predisposition Cascade Screening for Hereditary Breast/Ovarian Cancer and Lynch Syndromes in Switzerland: Study Protocol

    Get PDF
    Background : Breast, colorectal, ovarian, and endometrial cancers constitute approximately 30% of newly diagnosed cancer cases in Switzerland, affecting more than 12,000 individuals annually. Hundreds of these patients are likely to carry germline pathogenic variants associated with hereditary breast ovarian cancer (HBOC) or Lynch syndrome (LS). Genetic services (counseling and testing) for hereditary susceptibility to cancer can prevent many cancer diagnoses and deaths through early identification and risk management. Objective : Cascade screening is the systematic identification and testing of relatives of a known mutation carrier. It determines whether asymptomatic relatives also carry the known variant, needing management options to reduce future harmful outcomes. Specific aims of the CASCADE study are to (1) survey index cases with HBOC or LS from clinic-based genetic testing records and determine their current cancer status and surveillance practices, needs for coordination of medical care, psychosocial needs, patient-provider and patient-family communication, quality of life, and willingness to serve as advocates for cancer genetic services to blood relatives, (2) survey first- and second-degree relatives and first-cousins identified from pedigrees or family history records of HBOC and LS index cases and determine their current cancer and mutation status, cancer surveillance practices, needs for coordination of medical care, barriers and facilitators to using cancer genetic services, psychosocial needs, patient-provider and patient-family communication, quality of life, and willingness to participate in a study designed to increase use of cancer genetic services, and (3) explore the influence of patient-provider communication about genetic cancer risk on patient-family communication and the acceptability of a family-based communication, coping, and decision support intervention with focus group(s) of mutation carriers and relatives. Methods: CASCADE is a longitudinal study using surveys (online or paper/pencil) and focus groups, designed to elicit factors that enhance cascade genetic testing for HBOC and LS in Switzerland. Repeated observations are the optimal way for assessing these outcomes. Focus groups will examine barriers in patient-provider and patient-family communication, and the acceptability of a family-based communication, coping, and decision-support intervention. The survey will be developed in English, translated into three languages (German, French, and Italian), and back-translated into English, except for scales with validated versions in these languages. Results: Descriptive analyses will include calculating means, standard deviations, frequencies, and percentages of variables and participant descriptors. Bivariate analyses (Pearson correlations, chi-square test for differences in proportions, and t test for differences in means) will assess associations between demographics and clinical characteristics. Regression analyses will incorporate generalized estimating equations for pairing index cases with their relatives and explore whether predictors are in direct, mediating, or moderating relationship to an outcome. Focus group data will be transcribed verbatim and analyzed for common themes. Conclusions: Robust evidence from basic science and descriptive population-based studies in Switzerland support the necessity of cascade screening for genetic predisposition to HBOC and LS. CASCADE is designed to address translation of this knowledge into public health interventions. Trial Registration: ClinicalTrials.gov NCT03124212; https://clinicaltrials.gov/ct2/show/NCT03124212 (Archived by WebCite at http://www.webcitation.org/6tKZnNDBt
    • …
    corecore